ham

APRIL 1981 / \$2.50
magazine
incorporating
Hotifonis

After more than 30 years in the same location, Henry Radio in Los Angeles has moved to a beautiful new "World Headquarters" to better serve our amateur. commercial and industrial customers in Southern California, all over the United States and indeed the world.
Our new headquarters are just a few blocks from the Olympic Boulevard location where we have been meeting and assisting our good friends for these many years. All the famous Henry services are still available...only more so. The world's broadest line of amateur communication equipment plus the Henry line of high power HF linear amplifiers, solid state VHF and UHF amplifiers, our own Tempo line of synthesized hand helds for amateur use at 144.220 and 440 MHz as well as commercial channelized
handhelds and solid state amplifiers all FCC typ. accepted, and finally a broad line of industrial anc medical RF power supplies and plasma generator providing reliable continuous duty HF and VHF in th power range of 500 to 10,000 watts.

Henry Radio has come a long way in the 53 year since we first began serving the amateur fraternity. I the same personalized manner we have alway greeted our customers, we say "thank you" to all c our thousands of loyal customers whose support ha allowed us to come so far and we say "hello" fror our new "world" headquarters to all those thousand of customers throughout the world that we intend t serve in the years to come.

Please let us know how we can assist you.

[^0]931 N EUCLID ANAHEIM CA 92801 (714) 772.9200
BUTLER MISSOURI 64730 (816) 679-3127
TOLL FREE ORDER NUMBER: $|800| 421-6631$

DRAKE 7-Line Family

Temperature-controlled design for "key-down" operation over a wide frequency range.
2 kW PEP, 1 kW cw , RTTY, SSTV operation-all modes full rated input, continuous duty cycle.
160-15* meter amateur band coverage, plus expanded ranges for any future hf band expansions or additions within FCC rules. These ranges also include increased coverage for MARS, embassy, government, or other such services.
The Drake L7 utilizes a pair of Eimac $3-500 \mathrm{Z}$ triodes for rugged use, and lower replacement cost compared to equivalent ceramic types.
Accurate built-in rf wattmeter, with forward/reverse readings, is switch selected. Calibrated $300 / 3000$ watt scales.
Temperature controlled two speed fan is a high volume low noise type and offers optimum cooling.
Adjustable exciter agc feedback circuitry permits drive power to be automatically controlled at proper levels to prevent peak clipping and cw overdrive. Front panel control.
By-pass switching is included for straight through, low power operation without having to turn off amplifier.
Bandpass tuned input circuitry for low distortion and 50 ohm input impedance.
Amplifier is comprised of two units-rf deck for desk top and separate power supply.
Operates from $120 / 240 \mathrm{~V}$-ac, $50 / 60 \mathrm{~Hz}$ primary line voltage.

DRAKE L7 SPECIFICATIONS

- Frequency Coverage*: Ham bands 160 through 15 meters*. Nonamateur frequencies between 6.5 and 21.5 MHz may be covered with some modification of the input circuit. - Plate Power Input: 2000 watts PEP on ssb and $\mathrm{a}-\mathrm{m} .1000$ watts dc on cw, RTTY, and SSTV. - Drive Power Requirements: 100 watts PEP on ssb and 75 watts on cw , a-m, RTTY, and SSTV. - Input Impedance: 50 ohms. (Bandpass tuned input) - Output Impedance: Adjustable pi-network matches 50 ohm line with SWR not to exceed 2:1. - Intermodulation Distortion Products: In excess of -33 dB . Wattmeter Accuracy: 300 watts forward and reflected, \pm (5% of reading +3 watts). 3000 watts forward, \pm (5% of reading +30 watts) - Power Requirements: 240 volts $50-60$ hertz 15 amperes, or 120 volts $50-60$ hertz 30 amperes. - Tube Complement: Two of $3-500 \mathrm{Z}$ or $8802 / 3-500 \mathrm{Z}$ or $3-400 \mathrm{Z}$. - Dimensions: Amplifier $13.69^{\prime \prime} \mathrm{W} \times$ $6.75^{\circ} \mathrm{H} \times 14.25^{\circ} \mathrm{D}(34.8 \times 17.1 \times 36.2 \mathrm{~cm})$. Power Supply $6.75^{\prime \prime} \mathrm{W} \times 7.88^{\circ} \mathrm{H}$ $\times 11^{\prime \prime} \mathrm{D}(17 \times 20 \times 28 \mathrm{~cm})$. Weight: Amplifier $27 \mathrm{lbs}(12.25 \mathrm{~kg})$, Power Supply $42.5 \mathrm{lbs}(19.3 \mathrm{~kg})$.
- Export model includes coverage of the 10 -meter Ham Band.

- Frequency Coverage: $1.8 \cdot 30 \mathrm{MHz}$
- Antenna Choice: Matches antennas fed with coax, balanced line (use optional B-1000 Balun), or random wire.
- Antenna/By-Pass Switching: Allows matching unit by-pass regardless of antenna in use, and selects various antennas.
- Extra Harmonic Reduction: Employs "pi-network" low pass filter type circuitry for maximum harmonic rejection.
- Built-in Metering: Accurate Rf Wattmeter and VSWR Reading, pushbutton controlled from front panel.
- Input Impedance: 50 ohms resistive.
- Power Capability: MN7-250 watts average continuous duty ($0-300 \mathrm{~W}$ scale). MN2700-1000 watts average continuous duty (2000 watts PEP). ($0-200$ or $0-2000 \mathrm{~W}$ scale).
- Dimensions: MN7-13.1"W $\times 4.53^{\prime \prime} \mathrm{H} \times 8.5^{\prime \prime} \mathrm{D}$. excluding knobs and connectors ($33.26 \times 11.5 \times 21.6 \mathrm{~cm}$). MN2700$13.1^{\prime \prime} \mathrm{W} \times 4.53^{\prime \prime} \mathrm{H} \times 13^{\prime \prime} \mathrm{D}$ excluding knobs and connectors $(33.26 \times 11.5 \times 33 \mathrm{~cm})$.
- Weight: MN7-10 lbs (4.5 kg). MN2700-11 lbs (5 kg).

Drake MN7 and MN2700 Specifications

- Frequency Coverage: 1.8 to 30 MHz . Band Switch marked tor 160,80 , $40,20,15$, and 10 meter amateur bands; however, frequency coverage between amateur bands is possible by using the nearest band positions with a small reduction in matching capability. - Input Impedance: 50 ohms (resistive). - Load Impedance: 50 ohm coaxial with VSWR of 5:1 or less at any phase angle ($3: 1$ on 10 meters). 75 ohm coaxial at a lower VSWR can be used. - Balanced Feedlines: With the Drake B-1000 accessory balun, which mounts on rear panel, tunes feed point impedances of 40 to 1000 ohms, or 5:1 VSWR referenced to 200 ohms ($3: 1$ on 10 meters). - Long-Wire Antennas: Feed point impedances up to 5:1 VSWR referenced to 50 ohms. Also, 5:1 referenced to 200 ohms with the Drake B-1000 accessory balun (3:1 on 10 meters). - Meter: Reads VSWR or forward power. - Wattmeter Accuracy: $\pm 5 \%$ of reading $\pm 1 \%$ of full scale. - Insertion Loss: 0.5 dB or less on each band after tuning. - Front Panel Controls: Provide for the adjustment of resistive and reactive tuning, antenna switching, band switching, VSWR calibration, and selection of watts or VSWR calibration, and selection of watts or VSWR functions of the meter. - Rear Panel Connectors: The rear panel has four type SO-239 connectors (one for input and 3 for outputs), three screw terminal connections (for long-wire and open-wire feeder systems), and a ground post.

Nine Hundred Consecutive Hours At A Full Kilowatt! F Gouldirt be anvehing but...

Back in 1977 we ran an ALPHA 76 for eighteen days with a brick on the key at a full kilowatt. To emphasize that ALPHAs keep getting even better, we recently fired up a new ALPHA 76A at maximum legal power and let it operate twice as long-more than 37 days -900-plus hours!

WHAT MAKES AN ALPHA SO GOOD THAT WE DARE WARRANT IT FOR EIGHT TIMES AS LONG AS OTHER LINEARS. SPECIFY NO TIME LIMIT" AT FULL RATED POWER. AND CONFIDENTLY PUT A "BRICK ON THE KEY" FOR HUNDREDS OF HOURS? Above all. such spectacular durability depends upon a truly rugged transformer and excellent cooling

ALPHA TRANSFORMERS ARE LEGENDARY. Every one is designed and built to handle full rated power CCS-in practical effect, forever. As ETO's remarkable two year factory (limited) warranty suggests. they virtually never fail.

A FIVE YEAR TRANSFORMER WARRANTY? Yep. The Hipersil * transformer design used in ALPHA models 76CA, 78, and 77Dx is so tough that we ve extended the warranty on transformers in those specific models to five years!

SUPERB COOLING DESIGN IS ANOTHER ALPHA TRADITION AMATEUR RADIO PROFILES, the new Consumer Reports type publication. says. ". the
(ALPHA) 76A possessies) perhaps the best cooling system yet encountered. After prolonged use. the amplifier is barely warm to the touch ambient noise is barely audible.

ARP adds. Service is spectacular. Alpha gives a full 24 months (warranty) evidence that they really stand behind their product!" And the editor of a prominent DX newsletter recently cited AL PHA amplifiers as notable examples of equipment designed by experienced operators for real-world use.

It s been said that forethought is the only sure cure for buyer s remorse. We couldn't put it better. Every ALPHA linear amplifier is meticulously engineered and built to handle continuous operation in any mode. at maximum legal power. with no time limit. The factory warranty protects you for years, not months. Isn that food for (fore)thought?
Ehrhorn Technological Operations. Inc Box 708/Ganon City, CO 81212/ (303) $275 \cdot 1613$

radio

Hímradio HORIZONS

contents

12 Collins Owners' Report: the S-line
Martin Hanft, WB1CHO
18 high-performance CW filter
Edward E. Wetherhoid, W3NQN
26 DXer's Diary
Bob Locher, W9KNI
32 transient protection for the Collins 516F-2 power supply Ozzie Jaeger, W6AD

38 ham radio techniques
Bill Orr, W6SAI
44 X-band calibrator
Steve J. Noll, WA6EJO
64 portable shortwave converter Jack Perolo, PY2PE1C

68 frequency modulator for a 2-meter synthesizer
Tom Cornell, K9LHA
72 transmission-line circuit design: part 5
H.M. Meyer, Jr., W6GGV

78 improved receiver performance for the Heathkit SB-104A
Richard Tashner, N2EO

114	advertisers index	105 new products
52 DX forecaster	4 observation and	
93	flea market	opinion
110	ham mart	8 presstop
86	ham notes	54 questions and
7	letters	
		114 answers

It's getting to be that time again. The end of a long winter. The ground is beginning to thaw. Trees are starting to green up. Time to start thinking about antennas. And here I am, a displaced Californian, in the incredibly beautiful part of the country known as New Hampshire. In California I'd had to contend with problems such as zoning ordinances, a small city lot, and neighbors with marginal TV and stereo sets and a suspicious attitude toward ham radio operators.

But now, after some 45 years of hamming, suddenly it's different. I have some freedom: a location miles from the nearest city, rolling green hills sloping toward a huge lake, no maze of high-voltage wires, no manmade interference. This spring l'll put up the ideal antenna.

But what's the "ideal" antenna? After reading Jim Lawson's series in ham radio, one might consider the Yagi beam to be the ideal antenna. But to perform well, the Yagi requires, among other things, a tower of substantial height. This means bucks. Or, one might consider the quad antenna (also bucks and problems with construction).

So, I have decided that the ideal antenna for me is the long wire. It requires lots of wire and lots of real estate. But I'm fortunate. I have plenty of room for installation and a reel of surplus annunciator wire - enough for ten wavelengths on the 20 -meter band. According to the technical literature, a wire ten wavelengths long will produce a gain of 7.5 dB over a dipole, a very respectable figure indeed.

OK, you say, how do you rotate it or change its direction for DX? Answer: you don't. If the antenna is long enough and pointed in the general direction of the highest concentration of the foreign Amateur population, the long wire will not only provide excellent $D X$ results off both ends, but will also produce sidelobes that will cover intermediate directions.

This theory was proved last summer, when I first erected a long wire soon after arriving in New Hampshire. That long wire was only about three wavelengths on 20 meters. It was oriented due north and south; the low end of the antenna was only about 25 feet above ground. With low power (10 to 15 watts) I worked everything I could hear on 20 meters, both on short and long path. The long-path openings were few but produced some excellent contacts.

So this spring l'll put up a long wire, ten wavelengths long, on 20 meters, running north and south, and I'll feed it with the legal maximum power. Some muscles will be required to get it up into the trees (I'll enlist the aid of my staff). Watch out, Bob Locher! I'm out to give you the business!

The end of this month brings the ever-popular Dayton Hamvention. It will be interesting to see how this year's show turns out. Despite sounds of doom and gloom expressed by some in the industry, there are signs of hope. I hear rumors that several manufacturers are planning to announce new product lines at the show. That should be something to look forward to. The fact that almost all of the major names in Amateur Radio will be at Dayton should make for an enthusiastic crowd.

This will be the first year I've had a chance to visit the Dayton show. In all my years with ham radio I've been living on the West Coast and couldn't attend. But this year I'll be at Dayton with an open mind and megabytes of memory storage. I want to talk to you, our reader, to get your feelings about the new ham radio: what you like and dislike about it; what you'd like to see in it. I want to talk to industry leaders, look for new authors, try to find a few bargains in the flea market (more antenna wire), and just rap. Dayton will be extremely important to me as editor of ham radio; but it will be more important to you, our readers. Because you can tell me what you want to see in issues to come.

Look me up. I'll be there to listen to you. We need you and you need us. See you at Dayton!

ICOM MOBILE! ICOM MOBILE!

TAKE AMOTHER LOOK AT THE POPULAR MOBILE TWINS. . . IC-260A AMD IC-255A.

ICOM IC-260A. Enjoy VHF mobile at its best. Sideband, FM or CW, the ICOM IC-260A does it all. The ICOM IC-260A contains all the features a mobile operator would want in a compact 2 meter mobile package with FM, SSB, CW operation. Features customers ask for most including:
\star Squelch on SSB. The 260A will automatically and silently scan the SSB portion of the band seeking out the SSB activity on 2 .
$\star 3$ memories built in.
\star Memory scan.
\star Programmable band scan.
$\star 600 \mathrm{kc}$ repeater offset built in.
\star Variable repeater split - with the 2 built in in VFOs, it's possible to work the odd splits.
\star Multimode operation - USB,
LSB, CW, and FM. Great for getting into OSCAR, plus enjoying SSB rag chewing as well as repeater operation.

ICOM IC-255A. Features that have made the field proven and tested IC-255A the most popular 2 meter FM ig on the air today.
$\star 25 \mathrm{~W} / 1 \mathrm{~W}$ battery saving output.
\star Scanning (memory and programmable limit bandscan),
now with automatic scan resume.
\star Programmable splits - Flexibility for new repeater offsets.
\star Dual speed tuning - 15 KHz Steps, 5 KHz Steps with TS Switch depressed.
$\star 5$ memory channels - For easy access to your favorite repeaters.
\star Dual VFO's built in, lockable, mobile mount, dynamic mic standard, RIT fine tuning.
\star Simple, easy to use single knob tuning system for mobile operation.

IMPORTANT KEYER AND/OR TRAINER FEATURES	$\begin{aligned} & \text { AEA } \\ & \text { MM-1 } \end{aligned}$	$\begin{aligned} & \text { AEA } \\ & \text { KT-1 } \end{aligned}$	AEA MT-1	$\begin{aligned} & \hline \text { AEA } \\ & \text { CK-1 } \end{aligned}$	AEA MK-1	A	COMPE	$\underset{\mathrm{C}}{\mathrm{TITOR}}$	D
Speed Range (WPM)	2-99	1-99	1-99	1-99	2-99	8-50	5-50+	?	8-50
Memory Capacity (Total Characters)	500			500		400	100/400	400	
Message Partitioning	Soft			Soft		Hard	Hard	Hard	
Automatic Contest Serial Number	Yes			Yes		No	No	No	
Selectable Dot and Dash Memory	Yes	Yes		Yes	Yes	No	No	No	No
Independent Dot \& Dash (Full) Weighting	Yes	Yes	Yes	Yes	Yes	No	No	No	No
Calibrated Speed, 1 WPM Resolution	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No
Calibrated Beacon Mode	Yes			No		No	No	No	
Repeat Message Mode	Yes			No		Yes	Yes	Yes	
Front Panel Variable Monitor Frequency	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
Message Resume After Paddle Interrupt	Yes			Yes		No	No	Yes	
Semi-Automatic (Bug) Mode	Yes	Yes		Yes	Yes	No	No	No	No
Real-Time Memory Loading Mode	Yes			Yes		Yes	Yes	No	
Automatic Word Space Memory Load	Yes			Yes		No	No	Yes	
Instant Start From Memory	Yes			Yes		No	No	Yes	
Message Editing	Yes			Yes		No	No	No	
Automatic Stepped Variable Speed	No	No	No	Yes	No	No	No	No	No
2 Presettable Speeds, Instant Recall	No	No	No	Yes	No	No	No	No	No
Automatic Trainer Speed Increase	Yes	Yes	Yes						No
Five Letter or Random Word Length	Yes	Yes	Yes						No
Test Mode With Answers	Yes	Yes	Yes						No
Random Practice Mode	Yes	Yes	Yes						Yes
Standard Letters, Numbers, Punctuation	Yes	Yes	Yes						Yes
All Morse Characters	Yes	Yes	Yes						No
Advertised Price	\$199.95	\$129.95	\$99.95	\$129.95	\$79.95	\$139.95	$\begin{aligned} & \$ 99.50 / \\ & \$ 139.50 \end{aligned}$	$\$ 229.00$	\$129.95

OPTIONS:

MT-1P (portable version of MT-1) with batteries, charger, earphone
ME-1 2000 character plug-in memory expansion for MM-1
AC-1 600 Ma . 12 Volt wall adaptor for MM-1 with ME-1
AC-2 350 Ma .12 Volt wall adaptor for all AEA keyer and trainer products except MM-1 w/ ME-1
DC-1 Cigarette lighter cord for all AEA keyers and trainers except MT-1P
MT-1K Factory conversion of MT-1 to KT-1
PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE OR OBLIGATION.

All our keyers (except the MT-1) will operate with any popular single lever or lambic squeeze paddle and will key any type of modern amateur transmitter with no external circuitry required. AEA keyers are as easy to operate as a four function calculator. The internal AEA computers are all pre-programmed for the features shown above. Each AEA product is fully RF protected and receives a complete elevated temperature burn-in and test before it is shipped from the factory.
Ask a friend how he likes his AEA keyer compared to anything else he has ever tried, then JUDGE FOR YOURSELF. See the AEA keyer and trainer family at your favorite dealer.
Advanced Electronic Applications, Inc., P.O. Box 2160,
Lynnwood, WA 98036. Call 206/775-7373

A Arings you the

Dear HR:

Several things are distressing about buying and selling the answers to the Amateur license examinations, as you mention in your December editorial. I hope the matter will eventually be settled by having the FCC copyright its future Amateur tests. I hate to see Mr. Bash get rich and famous when the main thing that attracts anybody to "his" stuff is precisely the fact that he didn't write it! He only compounds his dishonesty by posing as a rebel voice against the stingy, oppressive Federal regulators - it's all a sales pitch.

But even you somehow seem to react as if an easy way out were being offered. Anybody who buys on this assumption is begging to be taken advantage of, since memorizing answers is actually the single most difficult way to prepare for a technical examination. The only way to make it easy is to learn to understand the subject matter, surely not an unfair requirement for a radio operator's license.

I myself took up Amateur Radio in 1979 and now have my Extra class license, yet I'm no electronics expert - only an interested student who isn't afraid of a multiple-choice examination. In my opinion, Bash and his supporters are treating our whole tradition of self-training - one of the best things about this hobby - with scorn.

David Satz, N1AWG Cambridge, Massachusetts

Dear HR:

W6SAI's article in the September, 1979, issue of ham radio concerning problems with the Collins KWM-2 transceiver was helpful to me in curing relay problems with my 32S-1 transmitter. The power relay, K1,
would sometimes trip as soon as the tubes warmed up, causing the transmitter to turn on. But frequently K1 would not turn on hard enough to trip the antenna relay, K2. It seemed to me this problem was brought about by stray rf tripping the VOX relay actuator tube, VIIA, a 6U8A.

After examining the circuit carefully, I decided to shield R75, the grid resistor of VOX amplifier tube, V14A, a 12AT7. I felt this resistor might be developing a current from stray of and feeding the amplifier. Next, following W6SAl's suggestion, I installed a 2 watt, 4700-ohm resistor between pin 1 (plate) of VOX relay actuator tube VIIA and K1. Finally, I replaced the two 68k 2-watt resistors composing R89 in the cathode circuit of VIIA with three 100k, 2-watt resistors, because the other resistors had shown signs of overheating.

These modifications seem to have completely cured my 32S-1 of relay trouble, and I thought they might be of interest to others who operate Collins S-line equipment.

Frisco Roberts, K5CE Corpus Christi, Texas

Dear HR:

This letter concerns an article in ham radio entitled "Navigational Aid for Small-Boat Operators" by Henry Keen, (September, 1980, pages 46-47).

While we appreciate Mr. Keen's effort to provide information regarding navigational aids for boaters, we are concerned that the system described would be in violation of the Commission's rules. For example, Mr. Keen states in the last paragraph of his article, "I suspect that such a system might operate, for example, in one of the $20-\mathrm{kHz}$ slots that appear in the CB spectrum." We do not feel that this would be possible or advisable for the following reasons.

Specifically, the proposed use of two beacon transmitters would not be in accordance with Section 95.401, Rule 22(a) of the Citizens Band Radio Service Rules which limit

CB communications to telephone only. In addition, Rule 23(a)(4) of the same section forbids the transmission of one-way communications by a CB station. Further, Mr. Keen's reference to the involvement of a marine operator raises other questions regarding operator qualifications and equipment control. We also should add that while Mr. Keen is a licensed Amateur, his proposed system would not be licensable in the Amateur Radio Service. Nor do we know of any other Commission service which could license the suggested navigational aid as proposed.

We are bringing this information to your attention so that you may alert your readers to the regulatory difficulties involved in the proposed system and to warn them against purchasing radio equipment that is not licensable.

Robert L. Cutts, Chief Spectrum Management Division Federal Communications Commission Washington, D.C.

Dear HR:

To an old-timer who used loop modulation on 10 meters in 1932 and learned fm during World War II under Fred Budleman and Fred Link (Link Radio Co.), the article on amplitude compandored sideband (ACSB) is nothing short of exciting. But can't we find a better name for it?

Am and fm are short, descriptive titles. SSB, or better, SB, or sideband, have a nice ring. NBVM is as cumbersome as the implementation of the technique. With full apologies to Dr. Lusignan, "amplitude compandored sideband (ACSB)," has zero appeal. Furthermore, it omits an important part of the technique: the pilot tone.

A more descriptive, easier-to-handie title is compressed piloted sideband (CPS). This might be shortened to compiloted sideband modulator (CSM). Let's start the new baby off with a good name.

Jack Geist, N3BEK
Silver Spring, Maryland

ARRL WILL DISCOURAGE 18 AND 24 MHZ "experimental" or beacon operation by U.S. Amateurs, the League's Executive Committee agreed recently. A number of Amateurs have applied to the FCC for Special Temporary Authorization to transmit on the two future Amateur bands, as is being done by the two Canadians who are working on 10 MHz . But with the uncertainty about when either 18 or 24 MHz will become available, it was felt that any such preliminary Amateur operations would encourage others without STAs to follow suit. The negative reaction that such unauthorized operations could generate, it was felt, would more than outweigh any possible benefit.

AMATEURS OPERATING $420-450 \mathrm{MHZ}$ in the vicinity of military installations in the Southwest and Florida got a nice break from the FCC at its agenda meeting on February 11. Acting on a petition from AMSAT to permit a power increase from the present 50 watts DC input in those areas, the Commissioners decided, with the agreement of the Air Force, that an increase to 1000 watts EIRP was acceptable. There is a stipulation, however, that the transmitting antenna be directed at least 10 degrees above the horizon. In addition two new restricted areas, both of 50 miles radius, were added at Otis Air Force Base in Massachusetts and Beale Air Force Base in California. Other restricted areas are described in Part 97.61(b)(7) of the rules.

HMR COMMUNICATIONS IS BEING SUED for $\$ 150,000$ by the Commonwealth of Pennsylvania in a suit filed February 18. In a news release, the state said HMR and its officers, Henry M. Robbins, Jr., and Sr., and Alice B. Robbins, "have repeatedly and continuously violated provisions of the state unfair trade practice and consumer protection law." Specific charges include representing HMR as a "million dollar" electronics company when in reality it is literally a "garage" operation. "HMR has misrepresented the nature and number of its customers, its size and assets, the names and qualifications of personnel, quality of equipment, delivery time, terms and conditions of sale, and warranty provisions." The state's Bureau of Consumer Protection says it has evidence that the Robbinses have'not acted in the interest of the corporation but rather in their own personal interest in their dealings.

The Suit Asks the Westmoreland County Common Pleas Court to order HMR and the Robbinses to make restitution to all of the more than a dozen complainants, plus pay the state a civil penalty of $\$ 150,000$.

FCC'S NEW FORM 610 IS CAUSING enough Amateurs problems that a significant number of the forms are being returned without action. Principal confusion with the August, 1980, version (the only one now valid) is with questions $2 \mathrm{~A}-2 \mathrm{~J}$: 2 A should be checked only if there are no changes, 2 G only if there is any change in name, such as dropping "Jr." (the former name must also be provided), and 2 H and/or 2 I , which must be checked if the mailing address or station location are changed. Questions 3 through 17 must also be answered, and failure to include the original or a photocopy of the license is also bouncing a number of applications.

A BIZARRE MURDER ON PALMYRA that took place during the 1974 KP6KR Kingman Reef DXpedition and involved the DXpedition group has just come to light in Hawaii. A young couple had run aground off Palmyra and were helped ashore by the DXers before they moved on to Kingman. An older retired couple, the Johnsons, arrived at Palmyra while KP6KR was operating on nearby Kingman and then disappeared without a trace.

A Month Later The Young Couple arrived in Hawaii on Johnson's yacht, repainted with no registration numbers. They were arrested, tried and convicted of piracy and related charges - but not murder, as no trace of the Johnsons was found. WA9UCE (now N6RJ) testified for the prosecution at their trial.

The Johnsons' Bodies have now turned up in a drum in Palmyra's lagoon. On February 23, the convicted pirates were indicted for murder.

FCC WILL CERTAINLY SUFFER as a result of expected governmental austerity under the Reagan administration. The Commission has been told by the Office of Management and Budget to expect to cut permanent positions by 8%, with 5% to go this year and 3% more in fiscal 1982. According to Broadcasting magazine, that amounts to a staff reduction of 160. Just where in the FCC those people will come from remains to be seen, although it's almost certain to affect Amateur Radio matters.

220 MHZ WAS SPARED, but the Commissioners did give $216-220 \mathrm{MHz}$ to the proposed automated inland waterways communications systems (IWCS). The initial proposal for IWCS had triggered protests from the Amateur community when a purported typographical error specified $216-225 \mathrm{MHz}$ as one of the options for the new system.

In An Unusual Move, the Commission adopted only those technical standards for IWCS that would serve to protect adjacent TV channel 13. Actual operational standards are to be proposed by potential IWCS users and suppliers.

MFJ Super Keyboards

> 5 MODES: CW, Baudot, ASCII, memory keyer, Morse code practice. TWO MODELS: MFJ-496, \$339.95. 256 character buffer, 256 character message memory, automatic messages, serial numbering, repeat/delay. MFJ-494, \$279.95. 50 character buffer, 30 character memory, automatic messages.

MFJ brings you a pair of 5 Mode Super Keyboards that gives you more features per dollar than any other keyboard available. You can send CW, Baudot, ASCII. Use it as a memory keyer and for MORSE code practice.

You get text buffer, programmable and automatic message memories, error deletion, buffer preload, buffer hold, plus much more.

MODE 1: CW

The 256 character (50 for 494) text buffer makes sending perfect CW effortless even if you "hunt and peck."

You can preload a message into the buffer and transmit when ready. For break-in, you can stop the buffer, send comments on key paddles and then resume sending the buffer content.

Delete errors by backspacing.
A meter gives buffer remaining or speed. Two characters before buffer full the meter lights up red and the sidetone changes pitch.
Four programmable message memories (2 for 494) give a total of 256 characters (30 for 494). Each message starts after one ends for no wasted memory. Delete errors by backspacing.

To use the automatic messages, type your call into message A. Then by pressing the CO button you send CO CO DE (message A).

The other automatic messages work the same way: CO TEST DE, DE, QRZ.

Special keys for KN. SK, BT. AS, AA and AR.
A lot of thought has gone into numan engineering these MFJ Super Keyboards.

For example, you press only a one or two key sequence to execute any command.

All controls and keys are positioned logically and labeled clearly for instant recognition.

Pots are used tor speed, volume, tone, and
weight because they are more human oriented than keystroke sequences and they remember your settings when power is off.

Weight control makes your signal distinctive to penetrate QRM.

MODE 2 \& 3 (RTTY): BAUDOT \& ASCII

5 level Baudot is transmitted at 60 WPM. Both RTTY and CW ID are provided.
Carriage return, line feed, and "LTRS" are sent automatically on the first space after 63 characters on a line. This gives unbroken words at the receiving end and frees you from sending the carriage return. After 70 characters the function is initiated without a space.

All up and down shift is done automatically. A downshift occurs on every space to quickly clear garbled reception.

The buffer, programmable and automatic messages, backspace delete and PTT control (keys your rig) are included.

The ASCII mode includes all the features of Baudot. Transmission speed is 110 baud. Both upper and lower case are generated.

MODE 4: MEMORY KEYER

Plug in a paddle to use it as a deluxe full feature memory keyer with automatic and programmable memories, iambic operation, dot-dash memories, and all the features of the CW mode.

MODE 5: MORSE CODE PRACTICE

There are two Morse code practice modes. Mode 1: random length groups of random characters. Mode 2: pseudo random 5 character groups in 8 separate repeatable lists (with answers).

Insert space between characters and groups to form high speed characters at slower speed tor easy character recognition.

Select alphabetic or alphanumeric plus punctuation. You can even pause and then resume.

MORE FEATURES

Automatic incrementing serial number from 0 to 999 can be inserted into buffer or message memory for contests.

Repeat function allows repetition of any message memory with 1 to 99 seconds delay. Lets you call CQ and repeat until answered.

Two key lockout operation prevents lost characters during typing speed bursts.

Clock option (496 only) send time in CW, Baudot, ASCII. 24 hour format.

Set CW sending speed before or while sending.
Tune switch with LED keys transmitter for tuning. Tune key provides continuous dots to save finals. Built-in sidetone and speaker.
PTT (push-to-talk) output keys transmitter for Baudot and ASCII modes.
Reliable solid state keying for CW: grid block, cathode, solid state transmitters $(-300 \mathrm{~V}, 10$ ma Max, $+300 \mathrm{~V}, 100 \mathrm{ma}$ Max). TLL and open collector outputs for RTTY and ASCII.

Fully shielded. RF proof. All aluminum cabinet. Black bottom, eggshell white top. $12^{\prime \prime} \mathrm{D} \times 7$ "W $\times 11 / 4^{\prime \prime} \mathrm{H}$ (front) $\times 3^{1 / 2^{\prime \prime}} \mathrm{H}$ (back). Red LED indicates on.
9.12 VDC or 110 VAC with optional adapter.

MFJ-494 is like MFJ-496 less sequencial numbering, repeat/delay functions. Has 50 character buffer, 30 character message memory. Clock option not available for MFJ. 494.

Every single unit is tested for performance and inspected for quality. Solid American construction.

OPTIONS

MFJ-53 AFSK PLUG-IN MODULE. 170 and 850 Hz shift. Output plugs into mic or phone patch jack for FSK with SSB rigs and AFSK with FM or AM rigs. $\$ 39.95(+\$ 3)$.
MFJ. 54 LOOP KEYING PLUG.IN MODULE. 300V, 60 ma loop keying circuit drives your RTTY printer. Opto-isolated. TTL input for your computer to drive your printer. \$29.95 (+\$3).
MFJ-61 CLOCK MODULE (MFJ. 496 only). Press key to send time in CW, Baudot or ASCII. 24 hour format. \$29.95 $(+\$ 3)$.

110 VAC ADAPTER. $\$ 7.95(+\$ 3)$.
BENCHER IAMBIC PADDLE. $\$ 42.95(+\$ 4)$.

A PERSONAL TEST

Give the MFJ-496 or MFI-494 Super Keyboard a personal test right in your own ham shack.

Order one from MFJ and try it - no obligation. See how easy it is to operate and how much more enjoyable CW and RTTY can be. If not delighted, return it within 30 days for refund (less shipping). One year unconditional guarantee.

To order, call toll free 800-647-1800. Charge VISA. MC, or mail check or money order for \$339.95 for MFJ-496, \$279.95 for MFJ.494, \$39.95 for MFJ-53 AFSK module, \$29.95 for MFJ-54 Loop Keying module, $\mathbf{\$ 2 9 . 9 5}$ for MFJ-61 Clock module, $\$ 7.95$ for the 110 VAC adapter and $\$ 42.95$ for Bencher Paddle. Include $\$ 5.00$ shipping and handling per order or as indicated in parentheses if items are ordered separately.

Why not really enjoy CW and RTTY? Order your MFJ Super Keyboard at no obligation today.

TO ORDER OR FOR YOUR NEAREST DEALER
 CALL TOLL FREE 800-647-1800

Call 601-323-5869 for technical information, order/repair status. Also call 601-323-5869 outside continental USA and in Mississippi.

Write for FREE catalog, over 80 products

ENTERPRISES, incorporated

[^1]

Rates for ALL 3 Days:
Admission: \$6 in advance, $\$ 7$ at door.
Banquet: $\$ 12$ in advance, $\$ 14$ at door.
Flea Market Space: $\$ 12$ in advance, $\$ 14$ at gate.

Make checks payable to Dayton HAMVENTION, Box 33, Dayton, OH 45405. Bring your family and enjoy a great weekend in Dayton. Sponsored by the Dayton Amateur Radio Association, Inc.

INTRODUCING SONY'S NEW DIGITAL DIRECT ACCESS RECEIVER!

Revolutionary Instant Access Digital Shortwave Scanner

- Continuous Scanning of LW, MW, SW, \& FM Bands
- Instant Fingertip Tuning-No More Knobs!
- 6 Memories for Any Mode (AM,SSB/CW, \& FM)
- Dual PLL Frequency Synthesized-No Drift!

A WHOLE NEW bREED OF RADIO IS HERE NOW! No other short wave receiver combines so many advanced features for both operating convenience and high performance as does the new Sony ICF-2001. Once you have operated this exciting new radio, you'll be spoiled forever! Direct access tuning eliminates conventional tuning knobs and dials with a convenient digital keyboard and Liquid Crystal Display (LCD) for accurate trequency readout to within 1 KHz . Instant fingertip tuning, up to 8 memory presets, and continuous scanning features make the ICF-2001 the ultimate in convenience.
Compare the following features against any receiver currently available and you will have to agree that the Sony ICF 2001 is the best value in shortwave receivers today:
DUAL PLL SYNTHESIZER CIRCUITRY covers entire 150 KHz to 29.999 MHz band. PLL_{1} circuit has 100 KHz step while PLL_{2} handles 1 KHz step, both of which are controlled by separate quartz crystal oscillators for precise, no-drift tuning. DUAL CONVERSION SUPERHETERODYNE circuitry assures superior AM reception and high image rejection characteristics. The 10.7 MHz IF of the FM band is utilized as the 2nd IF of the AM band. A new type of crystal filter made especially for this purpose realizes clearer reception than commonly used ceramic filters. ALL FET FRONT END for high sensitivity and interference rejection. Intermodulation, cross modulation, and spurious interference are effectively rejected. FET RF AMP contributes to superior image rejection, high sensitivity, and good signal to noise ratio. Both strong and weak stations are received with minimal distortion.

EXTENDED SPECTRUM CONTINUOUS TUNING

${ }^{\text {olt }} \$ 299^{95}$
plus
$\$ 5.00$
shipping
(4)
(1)
(1)

(G)

H
A Enter Button
B Signal Strength
Indicator
C Liquid Crystal Display
D Memory Preset Buttons
E Antenna Adjustment Dial

OPERATIONAL FEATURES

INSTANT FINGERTIP TUNING with the calculator-type key board enables the operator to have instant access to any frequency in the LW, MW, SW, and FM bands. And the LCD digital frequency display confirms the exact, drift-free signal being received. AUTOMATIC SCANNING of the above bands: Continuous scanning of any desired portion of the band is achieved by setting the " L_{1} " and " L_{2} " keys to define the range to be scanned. The scanner can stop automatically on strong signals, or it can be done manually. MANUAL SEARCH is similar to the manual scan mode and is useful for quick signal searching. The "UP" and "DOWN" keys let the tuner search for you. The "FAST" key increases the search rate for faster signal detection. MEMORY PRESETS. Six memory keys hold desired stations for instant one-key tuning in any mode (AM, SSB/CW, and FM), and also, the " L_{1} " and " L_{2} " keys can give you two more memory slots when not used for scanning. OTHER FEATURES: Local, normal, DX sensitivity selector for AM; SSB/CW compensator; 90 min . sleep timer; AM Ant. Adjust.

SPECIFICATIONS

CIRCUIT SYSTEM: Fm Superheterodyne; AM Dual conversion superheterodyne. SIGNAL CIRCUITRY: 4 IC's, 11 FET's, 23 Transistors, 16 Diodes. AUXILIARY CIRCUITRY: 5 IC's, 1 LSI, 5 LED's, 25 Transistors, 9 Diodes. FREQUENCY RANGE: FM $76 \cdot 108 \mathrm{MHz}$; AM $150-29,999 \mathrm{KHz}$. INTERMEDIATE FREQUENCY: FM 10.7 MHz .; AM 1st 66.35 MHz ., 2nd 10.7 MHz . ANTENNAS: FM telescopic, ext. ant. terminal; AM telescopic, built-in ferrite bar, ext. ant. terminal. POWER: 4.5 VDC/120 VAC DIMENSIONS: $121 / 4$ (W) $\times 2 \frac{1}{4}(\mathrm{H}) \times 6^{3 / 4}$ (D). WEIGHT: $3 \mathrm{lb} .15 \mathrm{oz} .(1.8 \mathrm{~kg})$

Collins Owners' Reports:

 the S-line
A survey of owners' opinions on the Collins 32S-line transmitter and 75 S-line receiver

In April of 1980, ham radio magazine published a questionnaire directed at the owners of Collins radios: the KWM-2/2A transceiver, the 32 S -line transmitter, and the 75S-line receiver. The results of the transceiver portion of that questionnaire were printed in the March issue. This month, we are presenting our findings on the 32 S and 75 S transmitter/receiver pair, based on the 210 completed questionnaires received.

the good features

Like the reports we received on the KWM-2/2A, reports on Collins S-line gear have been overwhelmingly favorable. For example, 74 percent of those surveyed rated Quality of Workmanship a 10 on a scale of 1 through 10. That's an astonishing figure. Also ranking very high were Durability, which received a rating of 10 from 70 percent of those who replied, and Reliability, which was rated 10 by 65 percent of the respondents to our survey.

Other features of the Collins S-line praised by many S-line owners were stability, audio quality, ease of maintenance, receiver selectivity, and dial
accuracy. See table 1 for the full story. It's clear that these solid and dependable Collins radios are highly thought of by the hams who own them, and that they have retained their reputation for quality down through the years despite all of the technological wonders that have come along since these radios were first designed. Here are some of the comments we received to the question, What is the rig's best feature?

table 1. What is the rig's best feature?*	
	percent
Reliability	45
Stability	27.5
Receiver performance	17.5
Dial accuracy	15
Clear audio	15
Selectivity	12.5
Signal quality	12.5
Ease of maintenance	12
200-Hz CW filter	11
Ease of tuning	10
Durability	8.5
Sensitivity	8.5
Wide frequency coverage	7.5
Resale value	5
Service manual	3
No TVI	2.5
*Many respondents gave more than one response.	

fig. 1. Ratings of the \mathbf{S}-line transmitter/receiver pair, from 1 (poor) to 10 (perfect).
"Wide frequency coverage for MARS, easy to operate, and very reliable." - W3PE
"Receiver is top of list when peaked and holds up over long periods of use. There's very little aging of components. Signals may be equaled but not beaten in quality." - W5CAE
"Total reliability under adverse conditions, ease of service, dial accuracy and stability of both frequency and operation. Also the ability to cover frequencies between 3.2 and 30 MHz without modification - or trading it in for another rigl" - W5USI
"Day in and day out reliability." - WA6T
"Outstanding sensitivity on all bands, and it does not have the constant hiss of solid-state receivers. Crisp audio (no mush)." - K6ITL
"This rig is reliable, no question about it. I expect it to perform every time I turn it on and it does. Also, the inter-connect for transceive operation is a plus." - WDDEOT
"Selectivity and ability to operate without strong signals blocking the receiver. I work 80 and 40 CW the most, and l've yet to find a receiver that can outperform the 75S-3B on these bands." - N2DL
"Excellent receiver and transmitted audio. I have modified my receiver according to Jim Fisk's article about cascading filters. I've also added some solid-state-equivalent "Tubesters" in certain areas: agc, audio, VFO, and crystal calibrator." - VE3UP
"Miles of band spread." - W3EHA
"Ease of operation. Sixteen years old yet it competes favorably with present-day designs. Holds resale value. Minimum upkeep and repair." W6MIR
"Front-end overload characteristics. It does not give up and die in a strong signal environment, the way the vast majority of current solid-state receivers do. The $200-\mathrm{Hz}$ CW filter is the best l've ever used." - W6JD
"Reliability. But also outstanding for quality construction, frequency stability, and re-set accuracy." - WTAY
"One of the best thought-out designs ever. Extremely stable - clean signal. Does everything it was meant to do, well. One of the most maintainable rigs ever. A real classic in my book." - WA@TWH
"Collins uses top-quality switches, making for long, trouble-free life. I have used all of the popular top radios and I still keep coming back to the Collins even though it doesn't have all the fancy features. It can't be beat."
"Does not drift. When I tune in on a certain frequency it stays on that frequency. It has a very good tone. I get good reports from most QSOs. One man even said to me, 'I bet you're using a Collins.' " WBDJJJ
"The best feature of the S-line has always been its
quality of construction, which has led to a record of reliability and dependability unparalleled in Amateur equipment. It should be borne in mind that the S-line is not, strictly speaking, Amateur equipment, as there are probably more units in government and commercial service than in Amateur use." WADFYG
"Reliability, good signal quality, stability." K9KER
"Overall quality. Good sensitivity and selectivity. Extremely durable and easy to service." - K4NYK
"Never had any trouble with it. Superb workmanship and quality control." - WB7VOR
"Rejection tuning (variable noise blanker)." KH6BD
"I can tune in WWV on Monday, turn it off and turn it back on on Friday and WWV will still be zero beat." - K4KAE
"Trade-in value." - K9GEL
"A ham could easily become an appliance operator with a rig this well built." - K3JHB
"Dial readout and mechanism, rugged construction, and neat, uncluttered layout." - W1EED
"Highly durable: works 3:1 SWR all day with no problems." - KA6JJK
"I believe that it is impossible to name one feature that is best, but, if I had to, I believe it would be reliability and quality of construction. What other rigs can you name that after twenty years are still state-of-the-art and operational?" - WD8BTU
"Ease of operation, dial accuracy, and consistent power over a wide range of frequencies." - W6DPD

on the other hand

Despite the almost overwhelming praise for the Collins S-line gear, there were also some criticisms. But not many. More than 55 percent of our respondents told us that there are no worst features to the Sline, or if there is one they haven't found it yet. That's quite a recommendation. Others, however, mentioned difficulty of tuning (and the time involved), being limited to $200-\mathrm{kHz}$ tuning, problems with the agc, lack of R.I.T., and the expense of replacement parts. Table 2 sums up the story.

Here are some sample responses to the question, What is the rig's worst feature?
"Some erratic VOX operation. Hard to change antenna relay." - W3PE
"Use of phono connectors in back for interconnection and accessories results in a rat's nest of cabling and risk of damage by wrong connection." WA4GWG
"Coverage of only 200 kHz on the VFO dial."
"Can't think of any." - W2MDB ex-1JY
"Price." - W4YY
"S-meter circuit can't hold setting for 10
table 2. What is the rig's worst feature?*

	percent
None	55.5
Use of phone-plug-tipped cables	17
200-kHz tuning	14
Replacement tubes	12
Time spent tuning up	11
No R.I.T.	10
VOX	9
AGC	8
Incomplete coverage $28-30 \mathrm{MHz}$	7
Not solid state	6
Frequency offset	5
Expense of parts	4
Price	4
Relays	8

*Many respondents gave more than one response.
minutes." - KH6GMM
"Tubes are getting harder to replace." - K9UQN
"Lack of noise blanker." - W6DPD
"Tubes." - N2AQS
"No noise blanker - it is very susceptible to impuise noise interference. Also, tube design is not as sensitive as some of the more modern solid-state designs." - K9AUB
"Can't receive all of 10 meters, even with three plug-in crystals. Poor factory service and availability of parts." - WB6GFJ
"The large number of crystals required to cover the bands." - VE3BGV
"Lack of sensitivity on 10-meter band." WA5NOM
"High cost of mechanical filters." - K4TTO
"Tubes becoming hard to find." - W5CAE
"None." - WØPEN
"Time required to tune up transmitter." - WA6T
"Servicing is the pits. Invariably, the part you need to get to is buried under six wires, three capacitors, and a big resistor." - WDOEOT
"Retuning transmitter after small amounts of movement within a band." - N2DL
"No R.I.T." - K1MNC
"Lack of ability to receive on the transmitter PTO, no passband tuning, and transceive on CW is not possible because of $1350-\mathrm{kHz}$ offset." - WQYK
"Tunes only 200 kHz." - K1MOU
"Lenghty tune-up procedure when changing bands." - K6MC
"Lack of rf input attenuator in receiver." W6NTJ
"With this system you have a desk full of equipment and a rat's nest of patch cables behind it. You'd think they'd have a harness for those cables or a mili-
tary-type connector with a dozen or so pins." WB2MXZ
"Cost." - W5AG
"Cost of parts is much too high. For example, $\$ 40$ for a spinner knob for the VFO." - WB4DOR
"Unable to use transmitter VFO for receive. Vacuum tubes: heat, size, pi-network final tank circuit, etc. - all those things that go along with vacuum-tube radios." - K4NYK
"The voX controls are inside the transmitter." KH6BD
"Lack of R.I.T. function in transceive, power consumption, and heat." - K4KAE

problems

Again, the largest percentage of respondents answered none to the question, Have you had any problems? Those that did have problems to report mentioned such things as having to replace capacitors or tubes, TVI, hum, and power supply problems. For the complete rundown, see table 3. Below are some of the comments.

table 3. Problems.	
	percent
None	43
Tubes	23
Replace small component	13
Ac power supply	5
Relays	5
vox	4
Alignment	2
Drift	2
AGC	2
Other	1

"VFO in 75S-3C went sour when the receiver was about $1 \frac{1}{2}$ years old. Linearity was bad (slug changed). I had to buy a rebuilt VFO for \$75." - K6RK
"VOX relay draws high current, thus requiring a series resistor. Driver 6CL6 runs hot (it was fixed with a heat-dissipating shield)." - W3DSE
"Dial slipping required some work. Poor contacts on RCA connector. Replaced high-voltage rectifiers and added vent fan." - WB6AJR
"None." - WA7RCR
"VOX on the transmitter and mechanical filter on the receiver." - W6KOM
"Worn dial mechanism (due to use), a bad resistor in the VOX circuit (32S-3), and a bad electrolytic capacitor. All problems well within expectations of the equipment and due to normal use." - K4SE
"Open relay contacts in 32S-3 transmitter require
cleaning about every four or five years. Some routine tube failures." - W5AL
"After 19 years of almost daily use a resistor in the Vox circuit failed." - W2VJN
"Minor component and tube failures." - W6GQC
"Bandswitch needed cleaning after exposure to salt water! No other problems." - K6ITL
"Doesn't tolerate SWR over 2:1. Blows out trimmer capacitors in pi-section. Twice replaced rectifier tubes in power supply." - K7AGC
"Band-change switch contacts become corroded in time and require cleaning." - W4YY
"Shorted plate capacitor in amplifier circuit, which caused rectifiers to burn out. Insulation of ac line in transmitter breaking down and shorting." W6BSO
"Diode in 516F-2 bias supply went bad after one year. Three of the $6 \cup 8$ tubes became gassy." WA5NOM
"CW spotting switch causing intermittent in power output. Contacts needed cleaning and adjustment. ${ }^{\prime \prime}$ - K6MBV
"Extreme instability in VOX due partly to heat in R88 and R140 of 32S-3. Audio distortion on 80 meters due to rf feedback into mike circuit." WB8SRR
'"Dial slipping and backlash in 75S-1 receiver PTO. 32S-1 transmitter neutralization sometimes tricky on 10 meters." - WA4GWG
"Defective BFO as received from factory promptly repaired." - W8IM
"Tube replacement." - K2OB
"The three-section, $40-\mu$ Fd capacitor in the power supply of the $75 \mathrm{~S}-3 \mathrm{~B}$ mounts on an aluminum chassis. You can not solder the can to achieve a good ground. This has presented an intermittent hum problem that can be temporarily solved by wiggling the capacitor. Also, have had an intermittent pulling of the receiver VFO. Occasionally, calibration is about 6 kHz low on the VFO dial." - WDOEOT
"Capacitor failure, bad diode, and relay failure." - W3IJ
"Blown resistor in microphone audio switch." VE3WP
"In the 13 years I have had Collins, I have replaced only one 6146 tube and one small capacitor in the voX circuit, which I repaired myself. No servicing needed." - WOVUU
"In the seven or eight years that I have owned the S-line and the 15 years that I have owned a 75A-4, other than an occasional tube there have been no component or mechanical failures." - VE3UP

related findings

Table 4 shows the accessories purchased most often by owners of the Collins S-line. Heading the

For more information and a price list, write SKYTEC,
Box 535, Talmage, California 95481; telephone 707-462. 6882.

A large number of Collins S-line owners express concern over the fact that their rigs use tubes. In fact, tube failure was the single largest problem encountered with these radios. Even though problems such as these are easily solved, they are problems nonetheless. For that reason, owners of Collin S-line equipment may be interested to learn about solid-state devices that are now available, devices designed specifically to replace the tubes in the 32S transmitter and 75S receiver with solid-state circuitry.

Each solid-state tube replacement - or Tubester, as they are called plugs neatly into the socket of the tube it replaces. The Collins 75S receiver will operate completely normally with only one Tubester replacing a tube, or with any mix of Tubesters and tubes, or with all Tubesters. The same is true of the 32S transmitter, except that it is not feasible to replace the driver or power amplifier tubes.

The complete installation and touch-up alignment takes only a few minutes and requires no special tools or test equipment. No modifications need be made in transmitter or receiver, and the installation procedure is simple and clearly explained. Operation and performance of the radios remain essentially unchanged.

Heat reduction is substantial with the use of Tubesters; in the case of the 32S transmitter, there is a 50 percent reduction in wasted power and heat during STANDBY. Reports from owners of Tubesters have been very favorable, and in fact, one of the Amateurs at ham radio has been using Tubesters for a year and is very happy with them. His only complaint is that, on cold winter nights, he can't warm his hands over the glowing filaments. (Note that Tubesters are designed for S-Line equipment only.)
list, with a percentage rating of 27 , is CW filters. Other items mentioned include crystal pack, linear amplifier, station control, and tuner. Ninety-seven percent of those responding said that they had been able to obtain the accessories they wanted, and an astounding 99 percent were satisfied with the accessories they purchased.

To the question, Have you had the rig serviced?, only 45 percent replied that they'd had service work done, a finding much in keeping with the high score the S-line received for durability and reliability. Of those who did have service work done, 92 percent
table 4. Accessories.

	percent
Filters	27
Amplifier	9
Station control	8
Crystal pack	8
Microphone	7
Wattmeter	7
Tuner	7
Rf processor	6
Q multiplier	5
Phone patch	4

said the work was satisfactory. To the question, What antenna do you use most?, 59 percent reported that they use a beam. Wire antennas accounted for 33 percent, with all others filling the remaining 8 percent.

would you buy one again?

To this all-important question, the response was a resounding 80 percent yes, 20 percent no. These figures are even higher than the yes/no ratio for the KWM-2 (73 yes/ 27 no). Most of those who said that they would not buy the S-line again cited as reasons high price, problems with tubes, and lack of up-to-the-minute, solid-state features. But for each Amateur who would not buy S-line again there were four who would - with no doubt about it. Many owners of Collins equipment are fiercely devoted to their equipment - and to the Collins name. A great number of respondents said that they would own nothing less than Collins.

All in all, it seems safe to say that the Collins S-line and KWM-2 are well liked - very well liked. They are exceptionally reliable and well-built pieces of radio gear that have withstood the test of time and still command a high price. Owners of Collins radios are generally convinced that, for dependability and durability, their equipment is top-of-the-line.
ham radio

NEW FROM HAL ELECTRONIC MAILBOX FOR RTTY

```
- DELETEF - KY2ON
- DIR - KY2OFF
- ENDFILE - PRINTON
- EXIT - PRINTOFF
- FILEHELP - QBF
- HELP - READF
- KY1ON - RYS
- KY1OFF . WRITEF
- KY1OFF - WRITEF
```

MSO-3100
Message Storage Option for
DS3100 $\$ 595.00$

The DS3100 Super Terminal is now even more versatile with the addition of the new MSO-3100.
The Message Storage Option (MSO) adds mass storage to the DS3100 so that relatively long messages may now be stored and replayed at will. For example, the MSO-3100 will provide more than 32,000 characters of additional storage-approximately 450 lines for messages. Messages are stored in variable length files with user-assigned file names and pass-words for file protection if desired.

The MSO feature may be accessed from either the DS3100 keyboard or by other users through the WRU feature of the ASR terminal. Thus, messages can be written, played, and relayed with either remote or local control.
Automatic TX/RX relay control, CW ID, and user help messages make the "electronic mailbox" easy for all to use. This factory installed option may also be used for bragtape and net bulletin preparation and storage.
Write or call us for more details.

When our customers talk . . . we listen.

FAL

HAL COMMUNICATIONS CORP.

Urbana, Illinois 61801 Box 365 217.367.7373

high-performance

CW filter

Network synthesis provides new applications for surplus toroidal inductors

scrapping a length of line, the telephone company discards these loading pots when they can't be salvaged for re-use.

background

Enterprising Amateurs are sometimes able to obtain these surplus loading pots and remove the inductors for use in audio-frequency filtering applications. During the past fifteen years, these inductors have found their way into many audio-filtering applications such as CW, speech and RTTY filters. A partial list of published articles illustrates the many ways in which these surplus inductors have been used by the Radio Amateur (references 1-13).
During the same fifteen-year period, observant Amateurs have seen the network synthesis method of filter design gradually replace the image-parameter design procedure developed by Otto Zobel in 1923. Filter designs are now possible which previously were not available. For example, the image-param-

Most Radio Amateurs are familiar with the surplus 88 - and $44-\mathrm{mH}$ toroidal inductors used as loading coils on the telephone lines. Hundreds of these inductors are contained in cylindrical steel "loading pots" that can be seen mounted on telephone poles along suburban and country roads. These loading pots vary in diameter from 8 to 16 inches (20 to 40 cm) and in length from 1.6 to 6.6 feet $(0.5$ to 2 meters). Occasionally, after repairing or

By Edward E. Wetherhold, W3NQN, Honeywell, Incorporated, Signal Analysis Center, P.O. Box 391, Annapolis, Maryland 21404
eter design procedure requires the addition of m-derived matching sections at each end of a prototype pi or T -intermediate section. These matching sections are required to transform the image impedance of the prototype network to a form that can be terminated with a common resistor. In addition to providing a suitable means of terminating the filter, the matching sections also produce a desirable abrupt rise in attenuation, with an attenuation peak at a frequency equal to 1.25 times the cut-off frequency of the prototype section (for $m=0.6$).
For non-stringent filtering applications, however, the image parameter filter is unnecessarily complex. For example, there are many applications where an increase in attenuation of between 6 and 8 dB per octave for each element is sufficient. With the development of network synthesis, it's now possible to design simple lowpass (or highpass) filters having a simple ladder configuration of alternating shunt Cs and series Ls for the lowpass configuration (or viceversa for the highpass configuration) that can be terminated directly in resistors without the need for special end-matching sections. The Butterworth and Chebyshev designs are examples of this filter type, and they are frequently used when ease of construction is of prime importance (see references 14, 15, and 19).
By combining the use of these high-quality surplus toroidal inductors with modern filter design techniques, it's possible to build high-performance passive LC audio filters that once were unattractive because of high cost, or the difficulty of design and construction. This article discusses the design and construction of a CW filter using eleven of the surplus toroidal inductors. The filter is easy to build, and its performance is comparable to that of many of the expensive active filters currently available.

loading inductor types and descriptions

Every loading inductor, regardless of type, has two separate and equal windings wound on a moly-bdenum-permalloy toroidal core with an outside diameter of about 1 inch $(2.5 \mathrm{~cm})$. Depending on the inductor type and the connection of the two windings, four different values of inductance are available. The most commonly available inductor has 88 mH in the series-aiding connection and 22 mH in the parallel-aiding connection. (Remember that when doubling the turns of an inductor the inductance is quadrupled, because inductance varies as the square of the number of turns. Thus, by connecting the two windings together in series-aiding, the turns are doubled, and the inductance is approximately quadrupled.) Because the magnetic coupling between the
two separate windings of the inductor is not perfect, the inductance in the series-aiding connection is slightly less than 88 mH . A typical measured value is 85.7 mH . This value will be used in the filter design to be discussed. The less-common type has an inductance of 44 and 11 mH in the series and parallel connections.
These 88 - and $44-\mathrm{mH}$ inductors are found in at least two different forms. One form is an unpotted stack of five inductors encased in a cardboard or sheet-metal cylindrical case, with a terminal board along its length to which all the inductor windings are connected (see reference 5 for details). These inductors can be easily removed from the stack by prying open the case and cutting loose the leads from the terminal board. Because the inductors are unpotted, any number of turns can be added or removed to obtain any odd inductance value that might be required for a particular filter design. This capability of obtaining a particular inductance value is necessary when the filter cut-off frequency and termination resistance must be a specific value, for example 750 Hz and 600 ohms .

The $88-\mathrm{mH}$ surplus loading inductor is also found in a potted form. The potted inductor has two separate $22-\mathrm{mH}$ windings terminated in four insulated wires, which exit the potting compound (see fig. 1). The potting compound is tough and hard. Any attempts to remove the inductor from its potted container will result in damage to the inductor windings. The photo illustrates what happened when I tried to break open the potting compound. Because the inductor windings can't be freed from the potting compound, the inductor must be used in an application requiring either the $88-$ or $22-\mathrm{mH}$ values. This means that, if the center frequency of a bandpass filter is selected to be a specific value, the bandwidth and termination resistance of the design must be allowed to vary. This is a compromise that must be accepted if the fixed $88-\mathrm{mH}$ inductor is to be used not particularly objectionable. I will show that these compromises are not unreasonable.
By using modern filter design procedures and the $88-\mathrm{mH}$ potted inductor, high performance CW filters can be designed and constructed where the fixed inductor value is not a disadvantage. The following paragraphs explain the design procedures for obtaining a CW filter for any desired center frequency.

design criteria
 and procedures

Previously published inductance-capacitance CW filter designs used either one or three resonant circuits (see references 6, 9, and 10). In the two cases

fig. 1. The schematic diagram shows the inductor connections inside the potted case, and the external connection (series-aiding) required for 85.7 mH . The photograph shows the unsatisfactory results of removing the inductor from its potted container. The leads are connected in series aiding for 85.7 mH .
where only one resonant circuit was used, the skirt selectivity was not adequate to warrant serious consideration by the experienced CW operator. The three-resonator filter was better, but it still lacked sufficient selectivity. The design discussed in this article has five resonant circuits, and the resulting selectivity finally provides the performance that the experienced CW operator can appreciate.
Filter center frequency. Because all but one of the filter inductors have a fixed value of 85.7 mH (the reason why the value is not 88 mH was previously explained), it's necessary that the bandwidth ($B W$) and termination resistance (R_{t}) be permitted to vary and be dependent on the selected value of the center frequency $\left(f_{c}\right)$. This criterion was used because the designer will want to select a particular f_{c}, while $B W$ and R_{t} are of less interest and can be left to fall where they may. Fortunately, for center frequencies between 500 and $800 \mathrm{~Hz}, B W$ and R_{t} values are quite
reasonable for the intended filtering application. (Frequencies below 500 Hz are difficult for most CW operators to hear, and for f_{c} values above 800 Hz , $B W$ becomes a little too broad.)

Filter Q. The widely published filter expert Anatol Zverev states that a very good bandpass filter can be made when its components have a Q not less than twenty times the ratio of $f_{c} / B W_{3}$, where $B W_{3}$ is the $3-\mathrm{dB}$ bandwidth. (See reference 16, page 21.) From experience, I've found that satisfactory bandpass filters can be constructed even if the Q is only ten times the $f_{c} / B W_{3}$ ratio. Since the inductor Q used in the construction of this filter varies between 25 and 40 over the frequency range of interest ($500-800 \mathrm{~Hz}$), and since the approximate required inductor Q for a satisfactory design is a constant of 30 (the $f_{c} / B W_{3}$ ratio is a constant 3.05 for all designs), I expect that this application of these surplus inductors will be quite practical.
The bandpass filter design is based on a transformation of a five-element (C in/out) Chebyshev lowpass filter having a reflection coefficient $(R C)$ of 6.3 percent. This $R C$ value was chosen because the bandpass filter center inductor is exactly one-half the inductance of the end inductors. Thus, if the end inductors are of the $88-\mathrm{mH}$ nominal value, the center inductor can be the standard $44-\mathrm{mH}$ type.

Fig. 2 shows the schematic diagram of the bandpass filter, including the component values for an f_{c} of 655.4 Hz . In addition to this design, twenty-four other designs have been calculated for f_{c} s between $496-1087 \mathrm{~Hz}$; they are listed in table 1. Table 1 data were computer calculated and are based on the eqs. 1-6 given in Appendix A. The tabulated values of $\mathrm{C} 1,5$ have been selected to include the standardcatalog capacitor values of $0.25,0.27,0.33,0.47$, $0.56,0.68,0.82$, and $1 \mu \mathrm{~F}$, with other values slightly above and below the standard values. The other component values and frequency vs. attenuation data are included to give an indication of the ranges of values that may be expected.

table 1. CW filter parameters for various center frequencies.

$\begin{aligned} & \text { F-center } \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{aligned} & \text { C1,5 } \\ & (\mu F) \end{aligned}$	$\begin{gathered} \text { C3 } \\ (\mu \mathrm{F}) \end{gathered}$	$\begin{aligned} & \mathbf{C} 2,4 \\ & (\mu \mathrm{~F}) \end{aligned}$	R-term (ohms)	$\begin{gathered} \text { BW-AP } \\ (\mathrm{Hz}) \end{gathered}$	$\begin{aligned} & \text { BW-3 } \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{gathered} \text { F-LO(3) } \\ (\mathrm{Hz}) \end{gathered}$	$\begin{gathered} \text { F-HI(3) } \\ (\mathrm{Hz}) \end{gathered}$	$\begin{gathered} \text { F-LO(30) } \\ (\mathrm{Hz}) \end{gathered}$	$\begin{gathered} \text { F-HI(30) } \\ (\mathrm{Hz}) \end{gathered}$
1087	. 250	. 50	. 0625	1841	286	357	924	1280	826	1431
1066	. 260	. 52	. 0650	1805	280	350	906	1255	810	1403
1046	. 270	. 54	. 0675	1772	275	343	889	1232	795	1377
1027	. 280	. 56	. 0700	1740	270	337	873	1210	781	1352
961	. 320	. 64	. 0800	1627	253	315	816	1132	730	1265
946	. 330	. 66	. 0825	1602	249	310	804	1114	719	1246
932	. 340	. 68	. 0850	1579	245	306	792	1098	708	1227
802	. 460	. 92	. 1150	1357	211	263	681	944	609	1055
793	. 470	. 94	. 1175	1343	208	260	674	934	603	1044
785	. 480	. 96	. 1200	1329	206	257	666	924	596	1033
733	. 550	1.10	. 1375	1241	193	240	623	863	557	965
726	. 560	1.12	. 1400	1230	191	238	617	855	552	956
720	. 570	1.14	. 1425	1219	189	236	612	848	547	948
664	. 670	1.34	. 1675	1125	175	218	564	782	505	874
659	. 680	1.36	. 1700	1116	173	216	560	776	501	868
655	. 688	1.38	. 1720	1110	172	215	557	772	498	863
604	. 810	1.62	. 2025	1023	159	198	513	711	459	795
600	. 820	1.64	. 2050	1017	158	197	510	707	456	790
597	. 830	1.66	. 2075	1010	157	196	507	703	453	785
549	. 980	1.96	. 2450	930	144	180	466	647	417	723
544	1.000	2.00	. 2500	920	143	178	462	640	413	716
538	1.020	2.04	. 2550	911	141	177	457	634	409	708
533	1.040	2.08	. 2600	903	140	175	453	628	405	702
518	1.100	2.20	. 2750	878	136	170	440	610	394	682
496	1.200	2.40	. 3000	840	130	163	422	584	377	653

Design procedure. After selecting a desired value of f_{c}, use the following procedure to find the filter component values. (See Appendix A for design equations.)

1. Find the desired approximate f_{c} in the first column of table 1.
2. Note the required value of $\mathrm{C} 1,5$ (fig. 2) in the second column, and from a group of about ten capacitors having the proper nominal value, select two having a measured capacitance within 1 percent of each other.

It isn't necessary to find the exact tabulated capacitance value, as any slight difference in capacitance between the selected value and that tabulated will only cause a slight shift in the center frequency. The important thing is that C 1 and C 5 must be within 1 percent of each other. (A digital capacitance meter, capable of measuring to an accuracy of 0.1 percent, is recommended.)
3. In a similar manner, select $C 2$ and $C 4$ with a value equal to one quarter of C1 (see eq. 5B, Appendix A). If necessary, parallel additional capacitors to obtain the required capacitance within 1 percent.
4. Select one capacitor for C 3 with a value equal to
twice that of C1 (see eq. 5A, Appendix A) and within 1 percent of the required value.
5. Connect the parts in accordance with the schematic diagram of fig. 2.
6. The shifted value of f_{c} corresponding to the selected value of $C 1,5$ can be calculated from eq. $1 B$.
7. Calculate the R_{t} value from eqs. 4C and 4D.
8. The bandpass response can be approximated from the values given in table 1, or the response can be calculated from the equations given in Appendix A.

As an example, the parameters of the filter design in fig. 2 are listed in table 1 for $f_{c}=655 \mathrm{~Hz}$.

CW filter performance

Before starting the construction of this filter, you want some assurance that the selectivity is adequate. This performance characteristic can best be appreciated by referring to a plotted attenuation versus frequency response curve. Fig. 3 shows both measured and calculated relative attenuation responses of the filter in fig. 2. I plotted the response on a linear scale to more accurately and clearly define the individual points on the response curve, compared with plot-

fig. 3. Measured and calculated attenuation responses of the CW filter in fig. 2. The measured response differs slightly from the calculated response because the resistive losses of the filter were not included in the calculations.
ting the response on semi-log paper, where the upper range becomes too compressed for good accuracy. Note the good agreement between calculated and measured values. This agreement indicates that the design procedure is valid, and the inductors are capable of producing a usable filter. The measured insertion loss (not indicated in the plot) is less than 3 dB at the center frequency, which is typical for a filter of this complexity and inductor Q.

Fig. 4 shows the filter response in a semi-log plot,

fig. 4. CW filter attenuation response is shown in a semi-log plot relative to the audio bandwidth of a typical Amateur receiver. About 75 percent of the undesired audio bandwidth is attenuated 30 dB or more.
which includes the audio frequency range of a typical communications receiver for comparison. Note that the frequencies below 400 Hz and above 1 kHz are attenuated by more than 50 dB . You should now be convinced that this filter has satisfactory selectivity. Further consideration can now be given to its construction.

construction

The filter was assembled in a $3 \times 4 \times 5$ inch $(7.6 \times 10 \times 12.7 \mathrm{~cm})$ aluminum box. This box is available from either LMB, No. T-F 779, or BUD, Type CU-3005A, at a nominal cost. There is just enough mounting area on the side of the U-shaped chassis to mount five potted inductors, side-by-side. The other five inductors are mounted on the other side. Holes were punched or drilled in the sides of the chassis, and the shafts of the potted inductor cases were held in place with Tinnerman clips. The $44-\mathrm{mH}$ inductor, terminal strip, and capacitors were mounted on the bottom of the U -shaped chassis.

Fig. 1 shows how the potted inductor leads are connected to obtain the $85.7-\mathrm{mH}$ value. The junction of the soldered leads also provides the centertap connection for L1 and L5. The other two leads were interconnected with the other inductor and capacitor leads in accordance with the schematic diagram of fig. 2. After the connections were soldered and taped, the interconnecting inductor leads were positioned along side the potted inductors - no terminal strips are necessary in this case.

The mating portion of the aluminum box contains the audio input cable and terminal strip, audio output phone jack, matching resistors, and the dpdt bypass/ through switch. The two filter halves are interconnected with a three-wire cabie. With a little care in component placement within the aluminum box, the separate halves of the box will fit together with no interference between the mounted components.

Inductor L3 is most conveniently obtained with a standard $44-\mathrm{mH}$ surplus inductor. The measured value of L3, as received, is actually 42.9 mH ; this is the value required for the filter construction. The inductance of the series-aiding connection of the two $11-\mathrm{mH}$ windings is slightly less than the expected $44-\mathrm{mH}$ value because of less-than-perfect magnetic coupling between the two coils. This inductor value is in short supply and is available from only one advertised source.*

It's also possible to modify an unpotted $88-\mathrm{mH}$ inductor, where the number of turns removed depends on the inductor winding configuration. Two winding configurations are currently available - one

[^2]in which two identically colored windings are wound on separate halves of the toroidal core with two cardboard spacers separating the windings; the other in which the windings are bifilar wound, round-andround, on the core with two differently colored wires.
The inductor with the two-color bifilar winding has almost perfect coupling between the windings, and this type of $88-\mathrm{mH}$ inductor is recommended for modification to obtain the desired centertapped $42.9-\mathrm{mH}$ value for L3. This inductor is available in a five-inductor stack. \dagger

To modify the bifilar-wound inductor, remove 113 turns from each winding (total turns removed are 226). Connect the start of one color winding to the finish of the other color winding. This junction is the inductor centertap; the other two ends connect across C3 (fig. 2).

The 88-mH inductor with two separate windings of identically colored wire is also available from either of the two previously mentioned sources. However, because of its less-than-perfect coupling between windings (about 95 percent), the separate-winding inductor is less preferable than the bifilar-wound inductor for this filtering application. To modify the separate-winding inductor to get the L3 value, remove 110 turns from each winding (total turns removed: 220).

how to get free
 potted 88-mH inductors

Through the cooperation of the Chesapeake and Potomac Telephone Company of Maryland, I have obtained a large number of potted $88-\mathrm{mH}$ inductors. These inductors were given to me by the telephone company with the understanding that I would distribute the inductors at no cost (except for packing and shipping expenses) to Radio Amateurs for use in their communications activities. The C\&P Telephone Company is aware of the public service performed by the Radio Amateur and wishes to foster this important Amateur activity by making these surplus inductors available to those who can use them. The recycling of these high-quality inductors is another example of how responsible industries are attempting to recycle our country's natural resources. (Each surplus inductor, if individually purchased on the commercial market, would cost more than \$8.) The CW filter described in this article is a perfect application for these inductors, and those interested in CW communications (CW-QRP net operators, especially) are

[^3]encouraged to write to me requesting these inductors and to build this filter.

I am serving as liaison between the C\&P Telephone Company and Radio Amateurs for distribution of these surplus inductors. First priority for inductor delivery will be given to Amateur-Radio clubs active in some form of community service or civil defense work, and located in the area serviced by the C\&P Telephone Company (Maryland, Virginia, West Virginia, and Washington, D.C.). Second priority goes to any club active in some form of community service. To obtain the free inductors, the club president or secretary should write to me requesting a specific number of inductors for a particular application. For example, if four club members wish to construct the CW filter, 40 potted inductors should be requested, and the names and call signs of the individuals who will receive the inductors must be includ-

fig. 5. The addition of 510 -ohm resistors in series with the filter input and output terminals provides the required filter terminations (1110 ohms) for a 600 -ohm audio system. An exact match is not necessary, and any termination within ± 20 percent of the design value will give satisfactory results.
ed. Those not affiliated with an Amateur Radio club may obtain free inductors by writing and providing details about their application. The priority of their request will be determined from the information they provide.

Each request must be accompanied with a stamped self-addressed envelope. My response will include packing and shipping costs. If more requests are received than there are inductors on hand, requests will be filled in order of priority until more inductors are received. All requests should be addressed to:
Edward E. Wetherhold, W3NON, 102 Archwood Avenue, Annapolis, Maryland 21401.

installation and operation

For satisfactory filter performance, some attempt must be made to terminate both ends of the filter in a resistive load approximating within 20 percent the design value of R_{t} or one-quarter of R_{t}. Fig. 5 shows a suitable terminating procedure for the filter of fig. 2 (where $R_{t}=1110 \mathrm{ohms}$) in an audio system having
an impedance of 600 ohms. Of course, there will be some signal loss caused by the two 510 -ohm series resistors, but the loss is not excessive, and it is easily corrected by simply increasing the receiver audio gain control. A 1 k ohm resistor is wired across the THRU/BYPASS switch to preveit an undesired increase in headset level when switching from the THRU to BYPASS position.
Other values of filter R_{t} may be similarly achieved by the addition of proper series resistance. To do this, however, you must either know or determine the impedance of the receiver audio output and of the headset. In some instances, it may be necessary to add resistance in parallel with the filter iriput and output to obtain the desired filter termination resistance.
Vacuum-tube receivers usually have an audio output impedance of 600 ohms, while the modern transistorized communications receivers may have an output impedance of between 4 and 8 ohins. When the receiver output impedance is very low, the addition of series resistance may not be feasible, because the audio output stage may not be able to provide sufficient output to overcome the excessive signal loss caused by the high value of series resistance. In this case, a matching transformer, such as the Radio Shack 273-1380 or equivalent, 8/1000 ohms centertapped, should be connected with appropriate series resistors to provide a suitable match. A small $115 / 6.3$-volt filament transformer may also be used, since it has a suitable turns ratio for transforming a 4 ohm source to around 1300 ohms, which is within the recommended ± 20 percent range of termination resistance ($1000-1600$ ohms) for f_{c} values from about $600-950 \mathrm{~Hz}$.
In addition to my experiences, several other Radio Amateurs have constructed this five-resonator filter design in which either the ten potted inductors described in this article or two five-inductor stacks were used. 20 In either case, the users were satisfied with the filter performance, and in many instances the filter made it possible to continue contacts which otherwise would have been lost. The filter bandwidth is wide enough to slightly shift the CW beat note within the filter passband, but the bandwidth is narrow enough to provide the required selectivity for effective communications.

summary

The advantages of filter design using network synthesis were briefly discussed, and a design example was given for a passive five-resonator bandpass filter suitable for CW application. To minimize cost, surplus inductors were used, and procedures for obtaining ten of the $88-\mathrm{mH}$ potted inductors at no cost (except for packing and shipping expenses) were
explained. Performance of the completed filter was thoroughly documented with two attenuation response plots, and a table of filter component values and response parameters was included for center frequencies between $496-1087 \mathrm{~Hz}$. A photograph showed how the filter components could be assemble, in a standard $3 \times 4 \times 5$-inch ($7.6 \times 10 \times$ 12.7 cm) aluminum box. A detailed appendix of design equations provided information so the interested reader could apply the design principles to other filtering requirements. Background material and sources of additional information were provided in a reference listing of twenty books and articles.

acknowledgments

I gratefully acknowledge the assistance of Frank Noble, W3MT, for constructing a filter in accordance with the instructions provided in this article, and for providing comments and improvements based on his construction and operating experiences. 1 also gratefully acknowledge the efforts of Joseph Gutowski of EWC, Inc., and Rex Cox of Honeywell, Inc., for their review of the article.

references

1. E. Wetherhold, W3NQN, "An Amateur Application of Modern Filter Design," OST, July, 1966.
2. E. Wetherhold, W3NQN, "An RTTY Bandpass Filter for 1275/2125 c.p.s.," QST, August, 1967.
3. E. Wetherhold, W3NQN, Technical Correspondence, "Modern Design Methods Applied to the Speech Filter," page 51, QST, November, 1967.
4. E. Wetherhold, W3NQN, "An RTTY Bandpass Filter for 2125-2975 c.p.s.," OST, April, 1968.
5. E. Wetherhold, W3NON, "Inductance and Q of Mcdified Surplus Toroidal Inductors," QST, September, 1968.
6. D.C. Pife, "Low-loss Passive Bandpass CW Filters," OST, September, 1971.
7. E. Wetherhold, W3NQN, Technical Correspondence, "Low-loss Passive Bandpass CW Filters," page 56, QST, January, 1972.
8. R. Myers, "A Quasi-Logarithmic Analog Amplitude Limiter," QST, August, 1974.
9. F. Noble, "A Passive CW Fiiier to Improve Selectivity," OST, November, 1977.
10. J. Bartlett, "A Simple CW Audio Filter," OST. April, 1979.
11. E. Wetherhold, W3NQN, Technical Correspondence, "Passive Audio Filter for SSB," page 50, OST, December, 1979.
12. J. Hall and R. Myers, "The CRUD-O-Ject," Weekend Projects, Vol. 1, pages 34-36, ARRL, Newington, Connecticut, 1979.
13. "Passive CW Audio Filter," 1980 Radio Amateur's Handbook, Fig. 46 , pages 8-27, ARRL, Newington, Connecticut, 1979.
14. E. Wetherhold, W3NON, " 7 -Element 50 -ohm Chebyshev Filters Using Standard-Value Capacitors,' r.f. design, February, 1980, pages 26-38.
15. E. Wetherhold, W3NON, "Lowpass Chebyshev Filters Use StandardValue Capacitors," Electronics, 19 Juite 1980, "Engineer's Notebook." pages 160-161.
16. Anatol I. Zverev, Handhook of Filter Synthesis, John Wiley \& Sons, New York, 1967.
17. Philip R. Geffe, Simplified Modern Fïter Design, John F. Rider, Publisher, Inc., New York, 1963, a Division of Hayden Publishing Co., Inc. 18. Philip R. Geffe, "EDN Designers' Guide to Active Filters," EDN, 5 February and 5 March 1974, (Parts 1 and 2, Butterworth and Chebyshev Design Fundamentals).
18. E. Wetherhold, W3NQN, "Low-pass Filters for Amateur Radio Transmitters," OST, December, 1979, pages 44-48.
19. E. Wetherhold, W3NON, "Modern Design of a CW Filter Using 88 - and $44-\mathrm{mH}$ Surplus Inductors," QST, December, 1980.

appendix \mathbf{A}

design equations for the
 bandpass filter of fig. 2

$$
\begin{equation*}
f_{c}=I /[2 \pi \sqrt{L l C l}] \tag{1A}
\end{equation*}
$$

where $f_{c}=$ center (geometric mean) frequency (Hz)
$L I=$ inductance (Henries)
$C l=$ capacitance (Farads)

$$
\begin{equation*}
f_{c}=543.66 / \sqrt{C l} \tag{1B}
\end{equation*}
$$

where $C l=$ capacitance $(\mu \mathrm{F})$
$L I=85.7 \mathrm{mH}$

$$
\begin{equation*}
C l=295,569.4 / f_{5}^{2} \tag{1C}
\end{equation*}
$$

where $C I=$ capacitance $(\mu \mathrm{F})$

$$
L I=85.7 \mathrm{mH}
$$

- $\quad f_{r}=$ center frequency (Hz)

$$
\begin{equation*}
f_{c}=\sqrt{f_{L \cdot O_{x}} f_{H H_{x}}} \tag{1D}
\end{equation*}
$$

where all frequencies are in Hz , and $f_{L O_{x}}$ and $f_{H H_{x}}$ are the lower and higher frequencies at the " x " attenuation level on the filter attenuation response curve (see fig. A-1).

$$
\begin{equation*}
B W_{A_{p}}=f_{c} \sqrt{(G 1 G 2)(L 1 / L 2)} \tag{2A}
\end{equation*}
$$

where G1 and G2 are the lowpass filter element values normalized for an $f_{c o}$ of one rad/sec and one-ohm terminations.
$L I$ and L2 are in Henries
A_{p} is the peak level (dB) of the passband attenuation ripple. $B W_{A_{p}}$ is the bandwidth (Hz) at the A_{p} attenuation level (see fig. A1)

fig. A-1. A typical attenuation versus frequency response of a bandpass filter includes the parameters defined in Appendix A.

$$
\begin{equation*}
B W_{A_{p}}=0.25 f_{r} \sqrt{G 1 G 2} \tag{2B}
\end{equation*}
$$

where $L 1 / L 2=0.0857 /(4)(4)(0.0857) 1=0.0625$

$$
\begin{equation*}
B W_{A_{p}}=0.26285 \mathrm{fr}_{\mathrm{r}} \tag{2C}
\end{equation*}
$$

where G1 $=0.8265$ and $G 2=1.3375$ for a 5 -resonator Chebyshev bandpass filter with reflection coefficient $(R C)=6.3$ percent

$$
\begin{equation*}
B W_{3}=1.248 B W_{t_{p}} \tag{3A}
\end{equation*}
$$

where $B W_{3}=3-\mathrm{dB}$ bandwidth of a BP filter for a 5 -resonator Chebyshev BP filter with $R C=6.3$ percent

$$
\begin{gather*}
B W_{3}=0.328 f_{\mathrm{f}} \tag{3B}\\
R_{t}=2 \pi\left(B W_{A_{p}}\right)(1.2(\mathrm{G} 2) \tag{4A}
\end{gather*}
$$

where $R_{t}=$ termination resistance (ohms). See equations 2A, B, C for values of L2 and G2.

$$
\begin{equation*}
R_{t}=6.4415 \mathrm{BW}_{A_{p}} \tag{4B}
\end{equation*}
$$

for $L 2 / G 2=16(0.0857) / 1.3375=1.3712 / 1.3375=1.0252$

$$
\begin{equation*}
R_{t}=920.5 / \sqrt{C l} \tag{4C}
\end{equation*}
$$

where $\mathrm{Cl}=$ capacitance $(\mu \mathrm{F})$
$R_{t}=$ resistance (ohms)

$$
\begin{equation*}
R_{t}=1.69314 f_{t} \tag{4D}
\end{equation*}
$$

where f_{c} and R_{t} are in Hz and ohms for $L .1=85.7 \mathrm{mH}$

$$
\begin{equation*}
C 3=2(C 1), L .3=(L .1) / 2 \tag{5A}
\end{equation*}
$$

where C and L are in $\mu \mathrm{F}$ and mH

$$
\begin{equation*}
C 2=(C 1) / 4, \quad L 2=4(L .1) \tag{5B}
\end{equation*}
$$

See fig. 2 for location of all C s and $L s$

$$
\begin{equation*}
B W_{x}=\Omega_{x}\left(B W_{A_{p}}\right) \tag{6A}
\end{equation*}
$$

where $B W_{x}$ and $B W_{A_{p}}$ are the filter bandwidths at the " x " and A_{p} attenuation levels, and Ω_{x} is the normalized bandwidth at the " x " attenuation level relative to the bandwidth at the A_{p} attenuation level; that is, $\Omega_{x}=\left(B W_{x}\right) /\left(B W_{A_{p}}\right)$

$$
\begin{equation*}
f_{L O_{x}}=-b_{x}+\sqrt{f_{c}^{2}+b_{x}^{2}} \tag{6B}
\end{equation*}
$$

where $b_{x}=\left(B W_{x}\right) / 2$

$$
\begin{equation*}
f H I_{x}=f L O_{x}+B W_{x} \tag{6C}
\end{equation*}
$$

See eq. 1D for the definitions of $f_{L O_{x}}$ and $f_{H I_{x^{\prime}}}$.
The attenuation levels for eleven values of Ω_{x} are listed in table A-1 for a five-resonator Chebyshev filter with $R C=6.3$ percent. To find $B W_{x}$ corresponding to a particular Ω_{x} and for any given f_{c}, calculate $B W_{A_{p}}$ (using eq. 2C), then calculate $B W_{x}$ (using eq. 6A).
table A-1. Attenuation (dB) as a function of Ω_{x}.

$\Omega_{\boldsymbol{n}}$	attenuation
1.00000	0.0173
1.24800	3.0000
1.33800	6.0000
1.40000	8.3000
1.60000	15.6000
2.00000	27.2000
2.11665	30.0000
2.50000	38.0000
3.00000	46.5000
4.00000	59.6000
4.50000	64.9000

By Bob Locher W9KNI

Getting up at 5 AM is a pain: a pain everywhere in my body. I turn off the insistent alarm clock as quickly as I can to avoid disturbing my long-suffering wife more than necessary. I lie back again to rest my complaining muscles, sore from yesterday's gardening. She says:
"Hey! If you're going to the trouble to set the clock for 5 AM, you'd better get up!" I snap back from dreamland - she's right. Poor thing she's wide awake now, while I'm barely alive. She should be the DXer!
I groan and swing my feet out of bed.
"Thanks, kid. I'm up now."
"Think nothing of it, my man." We laugh, and I start fumbling for my bath robe and slippers.
I flip on the switches on the gear and head back to the kitchen for my wake-up cup of coffee. In minutes I'm slumped in front of the receiver,

According to responses from our readers, Bob Locher's adventures in the DX world are extremely popular. Here's yet another episode in Bob's trials and tribulations. Looks like brother Murphy and his laws were operative this time. But no fear! Perserverance and dedication will really pay off. Try and try again! Editor.
you try turning the antenna to the west instead of north? Sometimes I'm so dumb even / notice it. I haul the antenna around, but the VK4 is gone now. So I tune on.
The band sounds a lot better now; many more signals. I find several loud VKs. There's a ZL, nice signals, too. OK, there's ZK1CT; a nice catch, but I already have him. I hear a weak signal - I switch in the audio filter and tune him in better - oh! OK, it's YU3DX, probably trying to help open the long path.
I look over my blackboard where I keep notes on the various DX stations I'm chasing. There it is, taking up a quarter of the board:

VK9NV 14042 at $11172 \quad 4 / 19$
14047 at 11402 4/22
14064 at 11572 4/25
(reports all gleaned from my DX bulletins.)

The pattern is pretty clear. The VK9 likes 1100 Zulu, so here I am plighting my troth, as it were.

This VK9 has been a real hard-luck story for me, with hours and hours of lost sleep piled up, and absolutely nothing to show for it. No wonder DXers grow gray hair.

If I get up at 5 AM on Tuesday, Wednesday, and Thursday, next week's bulletin is full of reports on his operations Monday and Friday. If 1 get up every night for a week, that's the week he's on vacation, or his antenna falls down. My buddies all catch him one night - the week / was on vacation! If I get up every night at $1100 Z$ the week after he returns from vacation, he starts operating at $0900 Z$ instead of $1100 Z$. If I discover that he has a sked with his QSL manager, a VK6, at 1000Z, sure enough - we get a disturbance and the band is dead.

But hope, the lifeblood of a DXer, springs eternal. Maybe today's my chance, in this forsaken hour of the dawn.

I move the receiver dial to 14040 and begin an intensive tune up the band. As I cross each signal, I try to identify it as to its possible location. The only strong signals I'm hearing are VKs and South Pacific stations. The weaker signals are faint Europeans, back-scatter Americans and Canadians, and the occasional crooked-path JA.

I have some other clues of my prey besides hints of his operating habits. His name is Nigel. He has a very clean, pretty fist, but doesn't appear to be any speed demon. His signal is clean, and of average strength for the VKs and ZLs. I obtained all this information from my pals who worked him and from the bulletins.

His OTH, Norfolk Island, lies off the
eastern coast of Australia and is an easy propagation shot, which compounds the difficulties. It means that there are more hours of the day that the path is open; more hours to watch. And all at the wrong times. Like at 1100 Zulu.

Finally, I'm really beginning to wake up. I keep tuning. Signals seem to be building slowly as sunrise approaches. There's VK5FM calling CO. There's a weak signal - yes - it's JAOCUV/1. There's a louder one "NAME HR TREVOR," and another, "QTH SYDNEY? SYDNEY."

I hear " 579 HR IN PORT MORESBY," "CQ CQ DE VK6RU," "73 SK N6RJ DE H44PT." The band really is in pretty nice shape. I look at the dial calibration - 14082. I spin the receiver back down the band. Guess I'll try starting at 14030 this time. I start my climb back up the band.

A thought hits me. I pick up my $2-$ meter microphone. "Hey, anybody alive out there? Here's W9KNI."
"Yeah, good morning Bob. W9KNI here's K9BG. What are you doing up at this hour?"
"Hey, good morning Jerry. Yeah, I guess it's morning. I'm looking for VK9NV, again. I'm tuning 20 CW for him. What are you doing up?"
"I thought l'd have an early look around 80 CW . I still need that zone 29 on 80, and VK6RU has been down there, so I'm told. But all I hear on 80 is loud QRN, and KH6XX, and he's not very strong. So I'm working over 40 CW now."
"Yeah, OK Jerry. Well, don't waste your time on VK6RU; I heard him here on 20 a couple of minutes ago calling CQ. Guess 80 must be no bargain at his end either this morning."
"OK, Bob, thanks. But 40 isn't too bad; I'm hearing lots of ZLs and VKs, and some good JA signals, too. If I hear that VK9, I'll call you for sure. W9KNI from K9BG."
"Fine, Jerry and thanks. If | hear anything good on 20, I'll call it in. K9BG from W9KNI."

My coffee cup is empty, so I run upstairs for a refill and am back at the rig in a few moments. Signals seem to continue to build up. I glance out the basement window, to see the first glimmer of the approaching dawn. I begin to tune up the band again. There sure are a lot of VKs on. But wait! It's Friday morning here and they are on the other side of the date line, so it's Friday evening there and they're starting their weekend. Sure wish I was. No wonder there are so many of them out.

I continue to try to identify signals. The clues I have are a big help; when I hear "OP HR TREVOR" I know it isn't my boy Nigel. "QTH HR DARWIN' means QTH here isn't Norfolk Island. I listen to all COs but usually have to wait only a few seconds before the station calling signs his call.

With more and more signals coming up, it's slow going. I glance at the clock. It's 5:35, 1135 Zulu. If my intelligence information is correct, he certainly should be on by now. I keep tuning, inspecting every signal closely. Some 1 can dispose of in a moment; others take several minutes before I obtain an adequate identification. And there's one QSO going at 14055 where the two stations are breaking back and forth without exchanging call signs.

Unfortunately, one of the two stations in the OSO perfectly meets the profile I'm using, to the extent that I can observe and glean information from what I hear. Nice, clean steady fist, average signal strength, and having a good old-fashioned ragchew with his buddy. "WX HR DRY TODAY." That's no help. Being dry is relative, it could be a dry day anywhere. If the mystery station had said it was snowing, I could tune on with confidence, because snow on Norfolk Island is highly unlikely!

I continue to listen for a few minutes, but no call signs. I can't afford to stay here too long - if one of the stations isn't the VK9 - and the odds are certainly against it - the

VK9 might be 5 kHz away and l'd never know it.

I decide to make note of the frequency and set my transmitter VFO on it and move on. That way I can keep jumping back to check out that oSO in hopes of finally catching a call sign.

My 2 -meter radio squawks, "H44PT, H44PT Seven Oh Two Nine, Seven Oh Two Nine, that's H44PT, Seven Oh Two Nine, from K9BG." Hmmm. So that H44 on Guadalcanal moved to 40 . OK. I was thinking of taking a look at 40, but with Jerry there watching, I'll concentrate on 20.

I zip back to the mystery QSO. Phooey - they're still going strong, and no ID. The worst of it is that a rare station who wanted a ragchew with his pal would do it exactly that way to avoid attention; but that's no guarantee that these fellows are rare.

I tune further up the band again. Lots of signals, but no goodies. I jump back to the mystery OSO.
"OK GEOFF TNX FOR KEEPING SKED QSP 88 TO HELEN ES 73 UR KIND SELF CU NEXT WEEK.' Hah! One of them's signing clear. I check my VFO to see that I'm zero beat. I'm ready. "CHEERS VK6RZ DE VK7OT SK."

Rats! Nothing there for me.
The basement lights blink: a signal from my wife that she wants to talk to me. l lift up the headphones.
"Bob, l've made a cheese omelet and some sausage. Would you like some breakfast?"'

Any remaining resolve to rough it out on the line of scrimmage instantly evaporates.
"Great. I'd love some. I'll be there in a second."
"OK, l'll pour you some fresh coffee."

I pick up the 2-meter microphone. "Jerry, I'm going to get some breakfast. Call me if you find anything. I'm leaving the volume turned up. K9BG from W9KNI."
"OK, Bob. Go ahead. I'll be here a while. W9KNI from K9BG."

An omelet, sausage, and hot coffee; a real treat compared to my usual roll eaten at my desk.
"No luck, huh?'" my wife asks, as she sets my plate in front of me.
"No, I think I'm snakebit on that one. How come you're up so early?"
"Once the clock went off I couldn't go back to sleep, so I thought I'd fix us a nice breakfast since we're both up."

I'm nearly finished with my breakfast when my 2-meter radio howls from the basement, "Hey, Bob! W9KNI, there he is! Hurry. W9KNI from K9BG. He's on 7019 calling CQ!'"

I have the receiver on him now. Yes, there he is. "KØMM KØMM DE VK9NV GM OM..."
"OK, Jerry, | hear him. Thanks a lot." I move my VFO a couple of kHz above him and start tuning. The linear plate current, grid current, and rf output start climbing as I advance the exciter drive control. Then, it happens: suddenly, no output! Hey almost at the same instant, the acrid, smoky smell of a hot component burning assails my nose. Startled, I look at the exciter, just in time to see a column of smoke dissipating over the final-amplifier compartment of the exciter. Oh, no!

In a very few seconds I'm in front of the rig, swallowing the rest of my sausage. I grab the 2-meter microphone. "OK, Jerry, thanks. I'm getting tuned up. If no one comes back to him, why don't you work him to hold him on the frequency? K9BG from W9KNI."

"OK, he's signing now."

I yank the receiver bandswitch down to 40 and spin the dial to 7019. With the other hand I switch the bandswitches on the exciter and the linear. Then I turn the antenna switch and preset the dials for a fast tune up.
"OK, Bob. He's got two or three people calling him. Hear him OK?'"
"He's signing clear, Bob. Are you ready?"
"Ugh. Jerry, my rig just blew up. I smell smoke from something, I don't know what. I'm going to try to fix it as fast as I can. K9BG here's W9KNI."
"Gosh, Bob. Sorry to hear that. You are snakebit with that guy. I'll let you have at it. W9KNI from K9BG clear."
"Thanks, Jerry."
It's panic time. If I'm quick, maybe I can fix the rig while he's still on. Plug in the soldering iron. Grab the Phillips screwdriver, the side cutters, the needle nose pliers and the solder
from the tool kit. Grab the VOM. Unplug the exciter. Pull off the coax cable and the control cables. Jeez!

Lift the top lid. Out come the two screws there. Put them on top of the receiver so they won't get lost.

Up on its back. Off come the feet. OK, turn it over again. There, OK. Gingerly, now, slide it out of its case. There, OK. Now up on its side.

I don't have to look far to see the source of the smoke. Underneath the final compartment I find a charred, blackened corpse of a 2-watt resistor. Must be a part of the screen circuit. There's no hope of reading the value. The color-coding stripes are only blackened faint scars on the blistered body.

I put the VOM across the part. Hmmm. I get a reading approaching one megohm, probably from other circuit elements. I yank the manual for the rig out of the file drawer and open it to the circuit. Then I begin draping the schematic foldout across
the table. I find the section showing the final and fold the drawing mostly back up, so that I don't cover all my tools. Time, precious time!

Yes, there is a 2 watter. Let's be sure it's the one. Yes, it appears to be the only one in the final cage. And yes, it goes from that pin terminal 3 with the jumper to the other tube, and to the tie poirt where that point oh-one disc cap is. Yes, that's got to be the part. OK, it's an 18 k resistor.

I jump over to the work bench and pull down the coffee can marked resistors. Lessee here. "Bad boys..." OK. Brown, Gray, Orange. Sure hope that I have one. That isn't the most common value.

I dump the contents of the can across the table. Hey; there's one! Maybe my luck is turning after all. I grab it and almost instantly I'm back at the rig. I look at the leads of the burnt resistor. While the ends of its leads are not particularly inaccessible, I decide to use the existing leads of
the old resistor to carry the new component, in the interest of speed.

Snip, snip, with the side cutters, and the old resistor is out. A few moments work with the needle nose pliers, and the new resistor is supported by the leads of the old one. A touch with the soldering iron on each end, and the part is in. I cut the ends off it, then slap the ohmmeter across the circuit. OK, it's showing 17 k ohms. Close enough. I unplug the soldering iron, and slide the tools out of the way.

I know I'm cheating a bit. I'm making the supposition that my rig problem is only and completely the failed resistor. If there's another problem that caused the resistor failure, I've done nothing to find it.

I know I'm gambling - but if I'm to have any chance to snag that VK9, the rig has got to work now. The time necessary to check out the adjacent circuitry would surely cost me any chance of a shot at the VK9.

\square For Home TV. Ham Radio and CB
\square Up to 18 sq. ft. antenna capacity.
\square Available to 64^{\prime} in 8^{\prime} sections.
\square All riveted construction no welds.
\square Beaded channel leg for added strength.
\square All steel - galvanized for added life.
\square Can be used with Concrete Base Stubs, Cylinder Base or Hinged Concrete Base.

UNR-Rohn

Division of UNR Industries, Inc 6718 West Plank Road, PO Box 2000 Peoria, ilinois 61656 US A

OK. I set the rig on its bottom and frantically start plugging in the various cables - coax, keyer, AC, PTT line, linear control. Forget the cabinet; I'll just be careful to keep my fingers out of it and put it back in later. Nobody watches TV at this hour of the morning anyhow.
With all the cables plugged in, I switch on the rig. So far, so good; the VFO dial face lights up, as does the meter pilot lamp.
"Hey, W9KNI from K9BG. Bob, are you having any luck?"
"OK, Jerry. I just replaced a smoked resistor and the rig is warming up. I haven't tested it yet. Is he still there?"
"Yes, he is, but he's a little bit weaker. I think he's workable, though."
"OK, if the rig works I should be ready now. Cross your fingers! K9BG from W9KNI."

I close the push-to-transmit switch. The relays pull in. Uh oh! No plate idling current showing on the exciter meter. That's a bad sign. I start to apply a little drive. Just then I hear a faint click, and a puff of smoke rises from the back of the rig.

Rats. Aaaagh. Ah, Phoooey. Darn. Son of a gun. Heck. Aw, shucks. Ouch! (Actually, that's not what I said, but, you know...)
Well, I gambled and lost. I would do it again the same way under the same circumstances.
"Hey Bob, he just went QRT. He said he'd be back tomorrow though. Did you get your rig working?"
"No, Jerry, but thanks. It figures. I really am snakebit on that guy. Well, I hope I can fix the rig by then. Hey, it's after seven. I have to get dressed and get out of here. I'm late. See you tomorrow, Jerry. Thanks for your help. K9BG here's W9KNI, clear. Good morning."
"OK, Bob. Hope you get it going OK tonight. 73, have a good day. W9KNI from K9BG, clear."
I turn off everything, and head up the stairs. It's going to be a long day - but it can only get better from here. And there's always tomorrow.
ham radio

Quality VHF/UHF Kits at Affordable Prices ~

These Low Cost SSB TRANSMITTING CONVERTERS

Let you use inexpensive recycled 10 M or 2 M SSB exciters on UHF \& VHF!

- Linear Converters for SSB, CW, FM, etc.
- A fraction of the price of other units; no need to spend $\$ 300-\$ 400$ i
- Use with any exciter, works with input levels as low as 1 mW .
- Use low power tap on exciter or simple resistor attenuator pad (instructions included).
- Link osc with RX converter for transceive.

XV4 UHF KIT - ONLY \$99.95

$28-30 \mathrm{MHz}$ in, $435-437 \mathrm{MHz}$ out: 1 W p.e.p. on ssb, up to $11 / 2 \mathrm{~W}$ on CW or FM. Has second oscillator for other ranges. Atten, supplied for 1 to 500 mW input, use external attenuator for higher levels.
Extra crystal for $\mathbf{4 3 2 - 4 3 4 ~ M H z}$ range.
. $\$ 5.95$
XV4 Wired and tested
$\$ 149.95$

XV2 VHF KIT - ONLY \$69.95

2W p.e.p. output with as littie as 1 mW input. Use simple external attenuator. Many freq. ranges available.

MODEL INPUT (MHz) OUTPUT (MHz)

XV2-1	$28-30$	$50-52$
XV2-2	$28-30$	$220-222$
XV2-4	$28-30$	$144-146$
XV2-5	$28-29(27-27.4$ CB) $145-146(144-144.4)$	
XV2-7	$144-146$	$50-52$

XV2 Wired and tested.
$\$ 109.95$

XV28 2M ADAPTER KIT - \$24.95

Converts any 2 M exciter to provide the 10 M signal required to drive above 220 or 435 MHz units.

NEW! COMPLETE TRANSMITTING CONVERTER

 AND PA IN ATTRACTIVE CABINETFar less than the cost of many 10W units! Now, the popular Hamtronics* Transmitting Converters and heavy duty Linear Power Amplifiers are available as complete units in attractive, shielded cabinets with BNC receptacles for exciter and antenna connections. Perfect setup for versatile terrestial and OSCAR operations! Just right for phase 3! You save $\$ 30$ when you buy complete unit with cabinet under cost of individual items. Run 40-45 Watts on VHF or 30-40 Watts on UHF with one integrated unit! Call for more details.
MODEL
KIT WIREDand TESTED
XV2/LPA2-45/Cabt (6,2,or220) \$199.95 \$349.95 XV4/LPA4-30/Cabt (for UHF) \$229.95 \$399.95

Easy to Build FET RECEIVING CONVERTERS

Let you receive OSCAR and other exciting VHF and UHF signals on your present HF or 2M receiver

- NEW LOW-NJISE DESIGN
- attractive woodgrain case
- Less than 2dB noise figuro, 20dB gain

MODEL RF RANGE OUTPUT RANGE

CA28
CA50
CA50-2
CA144 $28 \cdot 32 \mathrm{MHz}$ $50-52$
CA144 $\quad 144-146$
CA145 $\quad 145-147$-or-144-144.4
CAi 46
CA< 20
CA220-2 CA110

CA432-2
CAA32-5
CAA32.5
CA432. $140-146$
$220-222$ 220-224 Any 2 MHz of Aircraft Band 432-434 435.437 Easily modified tor other if and if ranges.

STYLE	VHF	UHF
Kit less case	$\$ 34.95$	$\$ 49.95$
Kit with case	$\$ 39.95$	$\$ 54.95$
Wired/Tested in case	$\$ 54.95$	$\$ 64.95$

Professional Quality VHF/UHF FM/CW EXCITERS

- Double tuned circuite for spuriotts suppression
- Easy to align with built-in test aids

15i-30	10 Meter, 2W Kit...... 544.95
T51-50	6 Meter, 2W Kit....... . 544.95
T51-150	2 Meter, 2W Kit $\$ 444.95$
TS1-220	$220 \mathrm{MHz}, 2 \mathrm{~W}$ Kit...... 544.95
T450	$450 \mathrm{MHz}, 3 / 4 \mathrm{~W}$ Kit . . . $\$ 44.95$
T451	$450 \mathrm{MHz}, 3 \mathrm{~W}$ Kit $\$ 59.95$
A14T	5 Chan Adapter (T518 T451) \$9.95

See our Complete Line of VHF \& UHF Linear PA's

- Use as linear or class C PA
- For use with SSB Xinig Converters, FM Exsiters, etc. LPA2-15 6M, 2M, 220; 15 to 20W $\$ 59.95$ LPA2-30 6M, 2m; 25 to 30W $\$ 89.95$ $\begin{array}{ll}\text { LPA2-40 } & 220 \mathrm{MHz}: 30 \text { to } 40 \mathrm{~W} \\ \text { LPA2 }-45 & 6 \mathrm{M} \\ 2 \mathrm{M} ; 40 \text { to } 45 \mathrm{~W}\end{array}$ $\$ 89.95$
$\$ 119.95$ $\begin{array}{ll}\text { LPA2-45 } & 6 \mathrm{M}, 2 \mathrm{M} ; 40 \text { to } 45 \mathrm{~W} . \\ \text { LPA4-10 } & 430 \mathrm{MHz}, 10 \text { to } 14 \mathrm{~W}\end{array}$ $\$ 119.95$ LPA4-10 $430 \mathrm{MHz}, 10$ to 14W $\$ 79.95$ LPA4-30 $430 \mathrm{MHz} ; 30-40 \mathrm{~W}$................... $\$ 1$
See catalog for complete specifications

FAMOUS HAMTRONICS PREAMPS Let you hear the weak ones too Great for OSCAR. SSB. FM. ATV. Over 14.000 in use throughout the world on all types of receivers.

NEW VHF/UHF FM RCVRS Offer Unprecedented Range of Selectivity Options

R75A. VHF Kit for monitor or weather sattelite service. Uses wide L-C filter, -60dB at $\pm 30 \mathrm{kHz} \$ 69.95$ R75B* VHF Kit for normal nbfm service. Equivalent to most transceivers. -60 dB at $\pm 17 \mathrm{kHz},-80 \mathrm{~dB}$ at $\pm 25 \mathrm{kHz} \ldots \$ 74.95$ R75C* VHF Kit for repeater service or high rf density area. -60 dB at $\pm 14 \mathrm{kHz},-80 \mathrm{~dB} \pm 22 \mathrm{kHz}-100 \mathrm{~dB} \pm 30 \mathrm{kHz} \$ 84.95$

R750* VHF Kit for split channel operation or repeater in high density area. Uses 8 -pole crystal filter. -60dB at $\pm 3 \mathrm{kHz},-100 \mathrm{~dB}$ at $\pm 15 \mathrm{kHz}$. The ultimate receiver! ... $\$ 99.95$
-Specify band: $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}$, or 220 MHz . May also be used for adjacent commercial bands. Use 2 M version for 137 MHz WX satellites.

R450() UHF FM Receiver Kits, similar to R75, but for UHF band. New low-noise front end. Add \$10 to above prices. (Add selectivity letter to model number as on R75.) A14 5 Channel Adapter for Receivers.
$\$ 9.95$

NEW R110 VHF AM RCVR

AM monitor receiver kit similar to R75A, but AM. Available for $10-11 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}, 220 \mathrm{MHz}$, and $110-130 \mathrm{MHz}$ aircraft band $\$ 74.95$. (Also available in UHF version.)

IT'S EASY TO ORDER!

- Write or phone 716-392-9430
(Electronic answering service evenings \& weekends)
- Use Credit Card. UPS COD, Check. Money Order
- Add S2.00 shipping \& handling per order

Call or Write to get

FREE CATALOG
With Complete Details
(Send 4 IRC's for overseas mailing)

transient protection for the Collins 516F-2 power supply

Solid-state devices provide improved efficiency and reliability

Power supply failures that seem unexplainable have been experienced by most of us at one time or another. In our haste to get back on the air, we probably resolved the problem by inserting a new tube, a

[^4]capacitor of higher voltage rating, or a larger fuse. It is the intentior of this article to emphasize an everpresent danger of catastrophic failure from voltage trancionts, and to recommend power supply modifications that reduce that danger.
fve heard that if the cost of transient protection is considered to be high, then so is the cost of a good safety belt. It is true that the replacement costs for new transformers, rectifiers, and meters may be relatively high by comparison.

The Collins 516F-2 power supply was selected as the subject of this article primarily because more than 30,000 of these units are believed to be scattered around the Amateur community. In this article, application of transient protection and substitution of silicon rectifier assemblies for hard vacuum tubes is explained, using the 516F-2 as an example. The information is general enough, however, that it can be applied to most power-supply modifications.

At a minimum, modification should include the addition of primary transient protection. The poor 5R4, as used in the 616F-2, was rarely if ever run within its ratings; this should be reason enough for substituting silicon rectifiers for hard vacuum tubes when

By Ozzie Jaeger, W6AD, P.O. Box 685, 803 Seacliff Drive, Aptos, California 95003
modifying any power supply for transient protection.
Like antennas, transient protection is a subject often discussed but not always well understood. This article is not intended to rectify that situation; instead, it provides the important, basic facts in a simple manner, so that modifications can be made without need of complex charts or mathematical formulas.

This article answers the following important questions:

1. What changes are needed to the supply?
2. Where do I get the materials, and how much will they cost?

need for transient protection

Suppression devices (or clippers, if you prefer) are used to protect against possible damaging effects of power line or internally generated transient voltages. These transients have been known to cause complete destruction of semiconductor as well as tube devices. Damage occurs when transient voltages exceed the maximum limits of power supply components. The sources of these transients are well known and are not discussed in detail here. They generally occur as a result of the familiar basic relationship:

$$
\begin{equation*}
e_{L}=-L d i / d t \tag{1}
\end{equation*}
$$

where $e_{L}=$ voltage across inductor (volts)
$L=$ inductance (henries)
$i=$ current (amperes)
$t=$ time (seconds)
This equation can be interpreted to mean that anything causing rapid switching of a high current is liable to generate a troublesome transient. Typical examples are:

1. Energizing or de-energizing a transformer primary (turning the supply on or off)
2. Connecting or disconnecting secondary loads
3. Semiconductor switching, such as by an SCR, or reverse recovery transients in the rectifiers themselves
4. External disturbances from motors, solenoids, or relays that share the same power line

Transients of widely varying magnitudes are found in all electrical systems; some of them can be highly damaging.

circuit applications

There are several methods of transient suppression; some are more effective than others, depending on circuit complexity. Only the one which lends itself best to Amateur applications (that is, low cost,
ease of installation, and parts availability) is considered appropriate for modification of the 516F-2 power supply. Before that choice is identified, the various techniques are briefly discussed.

Transient protection methods are classified as follows:

1. RC networks

2. Silicon voltage limiters
3. Metal oxide varistors

4. Selenium suppressors

RC networks. These are relatively inexpensive and provide excellent performance when used in conjunction with other means of transient protection. RC components are often quite large, especially when connected across the secondary of the powersupply transformer. Nevertheless, they are used widely in applications from small power supplies for transistors or integrated circuits to hard contact starter/contactor applications. For design purposes, the maximum energy expected to be present during a transient should be known. Energy is expressed as:

$$
\begin{equation*}
E_{\max }=1 / 2 L i^{2} \text { or } 1 / 2 C V^{2} \tag{2}
\end{equation*}
$$

where $E_{\text {max }}=1 / 2 L i^{2}$ or $1 / 2 C V^{2}$
$V=$ voltage (volts)
$C=$ capacitance (farads)
A typical RC circuit is illustrated in fig. 1. A small ac current flows through this circuit under steady-state operating conditions. In the event of a transient, large currents flow for brief periods. The resistor reduces the secondary circuit Q and absorbs some of the transient energy. I feel that the complex details needed to provide design information for the RC circuit is probably not of interest to most Amateurs. However, those wishing further details should send a self-addressed, stamped envelope to the author.

Other types of suppressors are often used in combination with RC networks to provide better suppression. When used with the MOV (metal oxide varistor) or break-over diodes, the RC network provides a higher level of energy absorption. The tradeoff here is one of economy, since the combination allows

fig. 1. Circuit of a typical RC transient suppressor.

fig. 2. Circuit diagram showing a transient suppressor connected across transformer primary.
lower-voltage power supply components to be used.
Special silicon voltage limiters. These devices consist of back-to-back avalanche diodes (zeners) constructed on a single substrate. In the circuit, one diode is always in the conducting mode, while the other is in the blocking mode, as illustrated in fig. 2. Much more can be said about this device and its excellent protection characteristics, but despite its good points, it is much too expensive for typical Amateur equipment. The silicon limiter is temperature sensitive; special care should be taken to ensure adequate heat sinking to keep its case temperature below about 260 F (125 C).

Metal oxide varistors. These are zinc oxide/ bismuth oxide ceramic devices. When used for transient protection, varistors act as clippers of incoming transients or transients caused by switching transistors. The power dissipation capability and current and voltage ratings are temperature dependent, so it's important to know the ambient conditions under which they will be operated. The manufacturers derating curves are generally available and should be consulted to establish temperature compatibility.

Metal oxide varistors also have a high capacitance characteristic, which limits their use to relatively low frequencies; however, since most Amateur applications use power-line frequencies, this should present no problem.

Selenium transient suppressors. Probably the type best suited for Amateur applications, selenium suppressors provide transient protection because of their sharp reverse voltage breakdown characteristics. They are available in either dc (polarized) or ac (nonpolarized) types, and each has an rms and dc rating of 24 volts per cell. When the unit is connected across the transformer primary (where most of the units will be used), it will draw a small, constant amount of current. However, in the event of overvoltage, a much larger amount of current will be drawn through the device for a very short period of time; this will limit the maximum voltage applied to the transformer primary, thereby possibly preventing
a catastrophic failure of a rectifier or filter component on the secondary side.

Selenium suppressors are available either in the axial lead or series metal plate type. Ninety percent of existing Amateur equipment includes power supplies in the $25-400$ watt range. The small axial lead suppressors are entirely satisfactory for these units. If space permits, or in case you're interested in protecting a really large power supply, the 1 -inch, $11 / 2$-inch, or even the 2 -inch selenium units should be used. It may be comforting to know that the large Voice of America broadcast station transmitters, with ac primaries up to 480 volts, use selenium suppressors exactly like those shown in the photographs. In addition, many large steel mills and foundries, and broadcast and TV stations use selenium suppressors of this type in their high-voltage power supplies. The fact that selenium suppressors are used in mountain-top and other difficult-to-reach telephone installations is testimony to their effectiveness.

Selenium units operate effectively in ambient temperatures up to $120 \mathrm{~F}(49 \mathrm{C})$. This characteristic should not be a problem for Amateur equipment. Finally, selenium suppressors have an energy-absorbing ability that is measurably better than that of any of the other devices discussed.

modifying the 516F-2

The importance of adding transient protection to power supplies has now been established, and the selenium type has been selected as the best choice for Amateur use; therefore, modification of the 516F-2 can now be described. Proceed as follows:

1. Remove blue wire from pin 2 on V 2 ($5 \cup 4$ socket)

The Collins 516F-2 power supply after modification. The silicon replacement rectifiers substitute for the rectifier tubes.
2. Mount a new 25 -watt, heat-sink-type resistor on back chassis apron between V1 and V2 sockets (100 to 200 ohms)
3. Connect blue wire taken from pin 2 of V 2 to the end of the new resistor being added
4. Connect other end of resistor to pin 2 of V2
5. Wire axial lead transient suppressor across transformer primary. Make the connections to one side of the fuse (ring section, not tip) and to the triple tiepoint that already contains two black wires
6. Plug in the $5 \cup 4$ and 5R4 silicon rectifier replacement units

After completing the modification (fig. 3) you'll find that the low voltage will be approximately the same as originally, but there will be 40 to 60 additional volts on the 6146 plates. To bring the static current back to its original value, readjust the bias pot.

While there is no danger in applying an additional 50 volts or so to the 6146 s, the higher voltage that would be obtained in the low-voltage circuits could be disastrous. This explains why the 25 -watt resistor is added in step two of the modification instructions. If you succumb to the temptation to leave this resistor out, you may achieve slightly higher power output, but you also guarantee shorter tube life. Considering the presently high cost of vacuum tubes, these extra few watts may be very expensive.

After completing the modification, you may notice that applying high voltage while the equipment is still warm may cause the multimeter to momentarily pin itself. To avoid possible damage to the meter assembly, a silicon meter protector should be installed across the meter terminals. This should consist of a pair of back-to-back 1-amp silicon diodes. These di-
odes should be chosen to have matching forward voltage drops.

The system including the power transformer will now run considerably cooler, because the two hard vacuum tubes have been eliminated. Also, the filament voltage at the receiving end of the long power cable will be closer to the proper value.

In case you decide to home-brew your own silicon plug-in rectifier units, first consider the actual operating voltages and select the diodes accordingly. A rule of thumb that will keep you out of trouble with a fullwave rectifier is the following: use silicon rectifiers whose PIV (peak inverse voltage) rating is equal to three times the total secondary rms voltage. This rule includes an adequate safety factor if you also include transient protection. In the $516 \mathrm{~F}-2$ supply, the rms voltage between pins 4 and 6 of the 5R4 with 120

Close-up of underside showing the rectifier sockets and the new 25 -watt resistor mounted on the rear apron.

fig. 3. Circuit diagram of 516F-2 power supply with modifications. Note: CR1 is a selenium rectifier that is subject to aging. It can be
replaced with a silicon diode. values of capacitance are in micro
tarads (.F); others are in picotarads (pF)/ resistances are in ohms. $k=1,000 \quad M=1,000,000$

IMPORTANT NEWS

hrourousHR REPORT.
AMATEUR RADIO'S ONLY BI-WEEKLY NEWSLETTER. Don't wait weeks or months to get the latest news on Amateur Radio events. Let HR REPORT put it in your hands a few short days after it happens. Editor W9JUV and his staff spend hours digging out the latebreaking stories. They give them to you in a concise, easy-to-read format - just the facts, not a lot of extra words. GET COMPLETE COVERAGE of FCC actions, ARRL news, and industry happenings. You also get a last
minute propagation report from noted forecaster $\mathrm{K} \emptyset \mathrm{RYW}$ plus contest reminders and week-after summaries, exciting DX news and Hamfest announcements.
It's all there in HR REPORT plus much, much more. Now just $\$ 18.50$ per year US, Canada and Mexico by first-class mail. Worldwide $\$ 35.00$ per year by airmail.

26 issues $=\$ 18.50$

U.S., CANADA \& MEXICO

GREENVILLE, N. H. 03048

Top view of Collins 516F-2 power supply before the modification.
volts across the primary is approximately 2,050 volts. Using our rule of thumb, the PIV rating of the silicon rectifiers used to substitute for the 5R4 should be no less than 6,000 volts.

For the low voltage supply, the silicon rectifiers should be rated at 2,500 volts or more. The rule is based on the fact that one diode is conducting while the other is back-biased; this means the back-biased diode sees the full secondary voltage, whose peak value is 1.414 times the rms voltage. We multiply this number by two to provide a safety factor. The safety factor takes into account transients that will exist despite transient protection but which will be reduced in amplitude. Computed in this way, the silicon diodes should last indefinitely.
In summary, this article has defined and dealt with transient protection in a simple and uncomplicated manner. Modification of the Collins 516F-2 has been the subject for modification, but other supplies may be modified in a similar fashion.

Silicon rectifiers are not as forgiving as vacuum tubes. They do not provide early warning by glowing red - they simply die. On the other hand, silicon operates cooler and is more efficient.

The silicon rectifiers in your power supply can last a lifetime if their PIV rating is adequate and if the supply includes transient suppression.

Components needed to make the modification can be obtained from OZ-COMM Co., P.O. Box 685, 803 Seacliff Drive, Aptos, California 95003 . Send a selfaddressed, stamped envelope for further information.
ham radio

The Kenwood 130S has everything you've ever wanted in a rig. And less.

Digital Readout. SSB/CW Transceiver. All Solid State. 3.5 to 29.7 Mhz . Coverage. Includes 3 new Amateur Bands. Speech Processor. IF Shift. Narrow/Wide Filter on both CW and SSB. The 130S is 10 inches wide, 12 inches deep, and 4 inches high. The weight (without Power Supply) is only 12 lbs. Get the rig that gets around. And gets out. From Madison.

1508 McKinney • Houston, Texas $77010 \cdot 713 / 658-0268$
Suggested Retail Price is $\$ 759.00$. Call for quote and delivery information. Madison. The best prices on Radio Gear are only a phone call away.
 Use the Madison Nightime Nightline: Call 1-800-231-3057 Between 6-10 P.M., Central Time (M-W-F).

A BETTER BALUN

from Barker \& Williamson, Inc.

BROAD BAND BALUNS

- Power Rating 2.5 KW-5 KW PEP
- Frequency Range $3.5-30 \mathrm{MHz}$
- SO 239 CONNECTOR

Types Available
Model BC-1
50 ohms unbalanced to 50 ohms balanced

50 ohms unbalanced to 600 ohms balanced
See your dealer or write:
Barker \& Williamson, Inc.
10 Canal Street
Bristol, Pa. 19007

ham radio TECHNIOUES β^{3}

Happy birthday 10 meters. March 7, 1981 marks the fifty-third anniversary of the opening of the 10 -meter Amateur band. Can you imagine what Amateur Radio was like in 1928, particularly before the 10 -meter band was opened for Amateur communications?

The International Radiotelegraph Conference, held in Washington, D.C., in 1927, set the pattern for Amateur Radio that lasts until this day. Gone were the huge Amateur bands informally assigned in the "useless" high-frequency spectrum. In their place were new, narrow bands and a new system of Amateur calls to indicate nationality. Amateur Radio had narrowly escaped the fate recommended by the Canadian delegation to the Conference, "...(1 do) not think that Amateurs should ever be given any wavelengths that are known to be useful for any commercial or government communication, and...they should always be obliged to stay within territory...regarded as completely useless...."

From this grim atmosphere

Amateur Radio grew and prospered.
Impossible to see at the time was the future benefit to Amateur Radio of a brand-new band assigned for "Amateur experimental" purposes at 28,000 to 30,000 kilocycles. In the 1928 QST editorial discussing the Conference and its immense changes to Amateur Radio, the new "10meter band" was mentioned only in passing. After all, everyone knew it was a quasi-optical, "line-of-sight" band and probably worthless, otherwise it wouldn't have been tossed to Amateur Radio, as a bone is tossed to a dog.

Of greater concern to the average Amateur was the fact that the 40 meter band had been slashed from 7,000 to 8,000 kilocycles (to 7,000 to 7,300 kilocycles), and the 20 -meter band had been severely cut from the assignment of 14,000 to 16,000 kilocycles (to 14,000 to 14,400 kilocycles). How could you cram more than 16,000 Amateurs into bands only a few hundred kilocycles wide?
The February, 1928, editorial in OST summed it all up: "We didn't get
as great privileges as we wanted or as great as we think we were entitled to, but we got all that we were able to, with loyal and powerful assistance from our government. Some of our (ARRL) members do not understand how the attitude of foreign governments could have any effect upon what our government does for us. They forget that radio is an international affair and that it has to be governed by international treaties."

welcome to 10 meters

For several years experiments had been conducted by Amateurs "on the 5 meter wave" of about 50,000 kilocycles (50 MHz). Aside from cranky receivers and erratic transmitters, the band looked promising for shortrange work. A few Amateur experimental stations had been given authority to work on 10 meters in 1927, but with dubious results. The new band was a complete blank. And it couldn't be used by Amateurs until April first. The only bright outlook

was that two experimental stations, ef8CT (France) and nu2JN (U.S.A.) had made contact on 10 meters on January 1, 1928. Perhaps the band did have DX capabilities (or maybe it was just a freak contact). Only time would tell. As far as was known, only seven Amateurs had been authorized for experimental tests on 10 meters. Plenty of listening had been done but few reports of contacts made.

A small squib in the back pages of April, 1928, OST announced the official opening of the 10 -meter band. The May, 1928, editorial enlarged upon the new band, commenting, "It is generally thought to be worthless because something happens to
waves shorter than 12 or 13 meters, which keeps them from producing useful signals even at the antipodes except under rare or freakish conditions. Eminent engineers have told us that the secret of the 10 -meter band lies in devising a method of controlling the angle of radiation, (italics mine) that if we can find this we will have 10 meters tamed. No more fertile field for the Amateur experimenter was ever offered. Lasting fame and glory awaits the successful."

A few hints were given for getting on the new band. 1 A modest beginner's transmitter circuit was shown in QST (fig. 1). This one-tube oscillator
worked directly on 10 meters. Either a UX-201A or a 210 could be used, depending upon available plate voltage. As you can see, specifications were comfortably vague, and the builder was advised to listen for the second harmonic of commercial radiotelegraph station WIK, which fell close to the center of the 10 -meter band. As to the receiver, almost anything would work, it was said. "Just take turns off the detector coil until you heard WIK."

10-meter results!

April 1, 1928, was the big day. The first two-way 10 -meter contact was between nu6UF (Knowles, California)

[^5]
fig. 2. The nu8EX transmitter used for the first two-way 10 -meter contact had a pair of 210 tubes in a self-rectified oscillator circuit. Alternating current at line frequency was applied to the plates of the tubes from the transformer at the right of the circuit (secondary only shown). With the low-C tank circuit and ac plate supply, the transmitter note must have been terrible! But it was good enough to do the job. (Drawing reproduced from the August, 1928, issue of QS7.

FULLWAVE SELP-RECTIFICATION IS USED BY 8EX WITH THIS REINARTZ CIRCUIT ARRANGEMENT

and nu8EX (Cleveland, Ohio). The whereabouts of the original 8 EX is unknown, but 6UF is active, on the air, and a close friend of mine. I called Bill Eitel (W6UF, now WA7LRU) on the telephone and asked him if he still recalled that historic contact. He did, and he told me all about it, and this is what he said, as near as I can recall:
"I remember it all very clearly. I was living in Knowles, California, in the foothills of the Yosemite. There was a big granite quarry in Knowles. All the granite for the Los Angeles city hall came from Knowles.
"One day I got a large, natural,
quartz crystal from a creek in the quarry. It was about 8 inches long and 2 inches in diameter. A friend working in the quarry cut it into several rectangles on a stone saw, then I cut it into rough crystal blanks with hacksaw blades and carborundum. From one of the blanks I cut a good 160 -meter crystal. It took days of work to get a crystal that oscillated, but I did it. The original crystal was anchored in plaster of Paris so it could be placed into the saw. Once I got a blank, it took many hours of grinding on a plate to make a useable crystal.
"The transmitter began with a type 210 tube oscillator on 160 meters followed by four 210 doubler stages, to 10 meters. Everything was tuned up with a homemade wavemeter. The final amplifier tube was a 203A at first, but I quickly substituted an 852 at about 100 watts input. I had a 10 meter vertical antenna and also a long-wire antenna.
"I remember that 8EX had a 210 oscillator. His transmitter was described in OST, (fig. 2). He used 60 -cycle ac on the plates of the 210s. The signal was very rough. His signal strength was about R6 (S 6 to new-

fig. 3. The pace-setting transmitter used for early $\mathbf{1 0}$-meter tests at W1XM. Four doubler stages provided $28-\mathbf{M H z e x c i t a -}$ tion from a $1.75-\mathrm{MHz}$ crystal. Because of capacitive coupling between stages, it is surmised that many spurious harmonic frequencies were present at the exciter output. Inductive coupling to the final amplifier (hopefully) eliminated birdies. The nu6UF transmitter resembled this, except that only one 852 was used in the final stage. (Drawing reproduced from the November, 1928, issue of QST.
comers), and we were in contact for about an hour.*
"My greatest satisfaction was in tests run later in the year and into 1928 with W1CCZ, on Cape Cod. This beautiful station was a result of work done by the Massachusetts Institute of Technology, by Paul Hendricks and E.C. Crossett, on whose estate the station was located. W1CCZ had a 500 -watt transmitter and a fourelement Yagi beam - unheard of in those days.
"The W1CCZ beam was unique in that it was movable in elevation. It was thought that high-angle signals were the answer to reliable communications on 10 meters. Many tests were run with the beam pointed up at 10 degrees from vertical, which seemed to provide the best results.
"One of the transmitters used in the MIT program operated under the call W1XM (fig. 3). My transmitter was somewhat like this, except I used 210s all the way and only a single 852 in the final stage. And I only had 1000 volts for the 852 . I never had much luck with that bottle." ${ }^{2}$

interest lags

in 10 meters

The year 1929 was a watershed year for 10 meters, as the sunspot cycle was on a rapid decline. Just as things seemed to be picking up and intercontinental DX was on the horizon, the bottom dropped out of the band. Interest lagged, and few signals were heard on 10 meters until 1935, when the sunspot cycle was again on the upswing. The band seemed to come back to life in the

[^6]
fig. 4. This two-tube, 10 -meter transmitter of 1936 is modern enough to do a good job on the band today. The 802 pentode amplifier is capable of 40 watts input. A $7-\mathrm{MHz}$ crystal was used. Cathode circuit of the 89 oscillator tunes to about 10 $\mathbf{M H z}$ to provide correct feedback. Plate circuit is tuned to 14 $\mathbf{M H z}$, and 802 is a frequency doubler to 28 MHz . (Drawing reproduced from the January, 1936, issue of QST.)
fall. The first WAC (Worked All Continents) on 10 meters was made by ZS1H (Union of South Africa). Things were beginning to pay off for a bunch of hardy experimenters, who had remained active on the band over the past three lean years.
OST said, "A band so universally considered dead that early DX work was practically forgotten has suddenly come to life, rewarding in good measure the few who struggled along on it with meagre results."
Worldwide DX conditions led to a flock of WAC certificates, and the first phone WAC was achieved by W6FOY in San Jose, California. Ten meters was alive and kicking!
Seven years had brought about a revolution in radio transmitting and receiving equipment. Gone was the regenerative receiver and self-excited oscillator. New crystal-controlled transmitters were available (fig. 4), and practical details were available for building a 10 -meter rotary beam antenna (fig. 5).

getting on 10 meters

In 1935 I attempted to get on 10
meters. It was a laborious process. I finally got my homemade receiver working so I could hear 10-meter stations. I was amazed at the outstanding signals pouring in from all over the world.

Getting the transmitter on 10 meters, however, was another matter. When it finally seemed to be working, I had no luck at all in working stations I could hear.

Call after call brought no results. Finally, a local Amateur called me on the phone and told me that I had tuned up on the third harmonic of my 40 -meter crystal and was on 15 instead of 10 meters! I was loud and clear in a portion of the spectrum in which an Amateur band didn't yet exist!

I soon corrected my error and finally hit the 10 -meter band. But I spent several nervous weeks waiting to see if I would get a citation from the FCC for my conduct. Luckily, the 15 -meter region was void of any activity, and the FCC probably didn't waste time monitoring the wasteland.
The reappearance of DX on 10 meters was a mystery to most

Amateurs who had never heard of the sunspot cycle. But in the years before World War II, the band was red hot with DX from all over the world booming in. No doubt the popularity of 10 meters helped fuel the boom in Amateur Radio in the late 1940s. Every stateside DX-minded ham wanted to work the rip-roaring signal of K6MVV (later KH6AR) in Hawaii!

10 meters after the war

November, 1945, was the red-letter day. The FCC announced the restoration of Amateur Radio on the high frequencies. The post-war 10-meter band was from $28.0-29.7 \mathrm{MHz}$, with
phone work, in the United States, from $28.1-29.5 \mathrm{MHz}$. Frequency modulation could be used above 28.95 MHz . The portion of the old band, from $29.7-30.0 \mathrm{MHz}$ had, regrettably, been lost in the post-war reallocation of frequencies.

Rapidly, 10 -meter Amateur stations were popping up all over the world, many of them run by Gls using military rigs. Some of the well-known calls were EA1D (Madrid Airfield), P1X (Holland), W8CJR/XU (China), W6NSL (Japan) and ZC6NX in Palestine.

The U.S. Marine Base at Tsingtao, China, in particular, was very active
on 10 meters, with more than twenty XU stations on the air at one time or another.

Rarer DX was there for the sharpeared DX hunter. W4YA/XZ on the Burma Road was on as well as G6CU/ZC2 on Christmas Island. Also included was Mr. DX himself, Reg Fox, AC4YN, in Lhasa, Tibet!*

the bright new world - of sunspots

Almost unnoticed in the clamor to get back on the air was an historic article in QST, which outlined wartime research into hf communications and the sunspot cycle. ${ }^{3}$ Research conducted before the war by the National Bureau of Standards and the Carnegie Institute was continued, with greater impetus, during the war by the armed forces. A method of predicting radio conditions, with respect to the sunspot cycle, had evolved.

Amateurs engaged in military communications during the war quickly realized that the frequencies above 20 MHz were capable of long-distance communications. The military fm band, centered at about 35 MHz , opened up day after day for longdistance Pacific DX. Operators in Borneo eavesdropped on communications from lwo Jima, and shipboard operators on the way to Okinawa were amused by complaints from Ulithi, in the Marshall Islands, that the ship "short range" fm transmission circuits were breaking up local harbor communications. Other transmissions up to 4,000 miles $(6,500 \mathrm{~km})$ were noted over various Pacific circuits in the $35-\mathrm{MHz}$ range.

Much of the unusual DX could be explained by the sunspot cycle and solar activity. Propagation studies revealed how much of the 10 -meter DX work was possible, and charts were available whereby propagation predictions could be made for the future. Best of all, the sunspot count

[^7]was on the rise, promising great 10 meter DX until at least 1952!

10 meters in the 50s

By 1953 the 10 -meter band was back in the doldrums. The sunspot cycle had taken its count, and hams looked elsewhere for DX. W1JPE (now W1DX) summed it all up:

> No more about ye DX bands, Do DXers pushe and pulle, Or talk about YJs, PKs,
> Or toss about Ye Bulle

Ye sunspot count hath gummed ye game
Ye bands are dry as snuffe And many a hearty soul, no doubt, Has learned how to do without, Excepting Thee and Me, Olde Scout,
Who never worked Ye stuffe.

the great sunspot cycle peak of 1957-58

And come back it did! After a few arid years, 10 meters came back to life in the fall of 1955, just as the experts predicted! And again, there was a revolution in equipment on the band; single sideband had arrived to stay. The band had perked up in the spring and was going full blast by fall. As the sunspot count increased and the MUF (Maximum Usable Frequency) continued to rise toward 50 MHz , many 10-meter operators noted that a too-high sunspot count could produce ill effects on the 10 -meter band, and the great sunspot cycle peak in the winter of 1957 didn't seem to produce super-DX on the 10-meter band, although the band remained open until the late evening hours.

DX was good, however, and exotic stations such as JT1AA (Mongolian People's Republic) were present, and Soviet Amateurs showed up on 10 meters in great numbers. And, as it had since the beginning of sunspot measurements by the Chinese before the birth of Christ, the sunspot cycle started its inexorable down turn, reaching a nadir during the winter of 1964.

10 meters today

The period between 1964 and 1976 represents Cycle 20 of the sunspot count, which started with Cycle 1, based on measurements made in 1750. The present Cycle, 21, is at, or near, a peak, and the 10 -meter band is alive with activity. This band is expected to remain active and capable of sustaining long-distance communications well into 1986. By then, when the sunspot cycle has dropped to a new low, it's possible that relay satellites may be in orbit to take up the slack. Time will tell.

survey of the

10-meter band area

Meanwhile, a lot can be learned from a close examination of the 10 meter band and its environs. Below 10 meters, ranging from 26.5 MHz to the low edge of 10 meters, is a bewildering mixture of illegal CB operation. By concensus, most out-of-band a-m CB operation occurs between 26.5 MHz and channel 1. From channel 40 up to (and sometimes including) the low edge of 10 meters, the frequencies are chock-full of SSB activity. At times, the ORM is extremely heavy, especially when the channels are open to worldwide communications. A look-see over this range by one unaware of the activity comes as a shocking surprise.

One day last fall, over a period of four hours, I logged over 30 countries on CB, which were operating outside the assigned channels. Stations as far away as Italy and Australia came rocking in, with plenty of callers in the United States!

The 10-meter band itself has a few surprises. During the afternoon hours, the third harmonic of the Radio Moscow home service in the 9MHz broadcast band is clearly heard on the West Coast. Stations as far inland as Tashkent come through. The stations seem to be spaced about every 100 kHz , starting with a harmonic on 28.0 MHz and running upwards of 28.8 MHz .

Above the top end of 10 meters, normally a preserve for Amateur fm from $29.5-29.7 \mathrm{MHz}$, lie the commercial fm channels extending higher in frequency from 29.7 MHz . However, at 29.705 MHz I could hear a special broadcast station in Israel, beamed to the Soviet Union. The transmitter power was 20 kW and the over-thepole signal was a good band marker for European openings in the spring of 1980. So far the station has not shown up.

Finally, there is growing activity at the high end of 10 meters as interest in fm grows. The calling frequency is 29.6 MHz , with repeater inputs every 20 kHz below that, to 29.52 MHz . The output channels are 100 kHz higher than the input and fall above 29.6 MHz .

It's an eerie feeling to bring up a repeater on the East Coast from California and work European and South American signals through it. And the hams on the East Coast can work Australia and New Zealand through repeaters in Californial Some repeaters have an input on 144 MHz , and it's common to hear hams on 2 meters working DX on 10 meters through a repeater while walking around with a handheid rig.

And so it goes. The 10 -meter band has come a long way from the early days when nu6UF opened the band with his historic OSO. A salute, then, to 10 meters and happy birthday! Here's to more and better 10-meter activity until old sol takes over the band sometime in 1986. I'll see you on Ten!

references

1. Kruse, "Getting Started at 30 Megacycles," OST, May, 1928.
2. I wonder if the trouble Bill Eitel had with the 852 influenced him to go into the tube business in a few years! Bill and Jack McCullough, W6CHE, were instrumental in designing the HK-354 transmitting tube at Heintz and Kaufman Company in the early 30s. Then they went on to found Eitel-McCullough, Incorporated, the manufacturer of the famous EIMAC power tubes.
3. Conklin, "The Bright New Wortd of Sunspots," QST, January, 1946. (Bill Conklin, then W3JUX, is now licensed as K6HA).
ham radio

X-band calibrator

How to get started on the $10-\mathrm{GHz}$ Amateur band

This article describes a frequency calibrator for use with Amateur X-band transceivers such as the Microwave Associates Gunnplexer ${ }^{\ominus}$. The calibrator is simple to build and makes communications over long-haul, non-optical paths easy to accomplish.

the Gunnplexer

The Microwave Associates Gunnplexer is a great device with which the Amateur can explore the challenging frontier of microwaves. The Gunnplexer includes a Gunn-diode oscillator, which is used for both the transmitter and receiver local oscillator. A Schottky diode and ferrite circulator are used as the receive mixer (fig. 1). A varactor diode mounted in the Gunn-diode oscillator cavity provides approximately 100 MHz of transmit and receive tuning varia-
tion (plus frequency modulation). All that's required for operation is 8 or 10 Vdc for the Gunn-diode, * $0-20$

fig. 1. The Gunnplexer consists of a Gunn-diode oscillator, which serves as both the transmitter and receiver local oscillator, and a Schottky diode and ferrite circulator which are used as the receiver mixer.
*Some units require 8 Vdc and some 10 Vdc . The required voltage should be marked on the unit.

By Steve J. Noll, WA6EJO, 1288 Winford Avenue, Ventura, California 93003

Vdc for varactor tuning, and an fm receiver for the i-f. Audio is coupled into the varactor for modulation. The i-f is $30 \mathrm{MHz} .^{1}$
Gunnplexers have been available in pairs set to the standard split of 30 MHz . One unit is mechanically tuned so that, with 4 Vdc of varactor bias (tuning voltage), the Gunn-diode oscillator output is 10.280 GHz . The second unit is similarly set to 10.250 GHz with 4 Vdc bias. The difference of these two frequencies is the "standard" i-f of 30 MHz .

The tuning range of a typical $10.250-\mathrm{GHz}$ Gunnplexer is approximately 10.22 to 10.32 GHz . A typical $10.280-\mathrm{GHz}$ unit covers approximately $10.25-10.35$ GHz . These are the Gunn oscillator frequencies, so the receive frequencies will be 30 MHz above and below.

the problem

Two problems become apparent after one has had some experience with the units over long paths. One is aiming the antennas when the location of the other unit is not precisely known. Eventually the operator graduates from the basic $17-\mathrm{dB}$ horn antenna supplied with the Gunnplexer to high-gain parabolic reflectors. With high gain comes narrow beamwidths; that is, about 2-1/2 degrees for a 3 -foot (1 meter) dish and 1-1/4 degrees for a 6 -foot (2 -meter) dish. This certainly can make aiming over non-optical paths very difficult.

The second problem is finding the signal. This problem can be worse than the first, especially when the signal is weak. The 100 MHz of tuning is quite a bit. You can easily tune by a weak signal even when ten-turn pots are used for tuning. Narrow i-fs that are used to increase range add to the problem. It is desirable to have the full $0-20 \mathrm{Vdc}$ tuning range available to be compatible with any other person's Gunnplexer; that is, to be sure to be within his tuning range.

These two problems of aiming and tuning are definitely additive. They make an attempt at a longdistance contact a formidable task. However, solve one problem and the other becomes much easier.

the solution

The use of compass and map will get you in the ballpark on aiming, but usually not right on. Frequency calibration would solve the tuning problem. An Xband frequency counter would be nice, and also unaffordable - especially insofar as one would be required at each end of the path. An X-band crystalcontrolled multiplier chain with perhaps a Snap diode output circuit would do the trick too. But it would also be a trick to build.

All hope is not lost, however. There is a very simple and inexpensive way to solve the problem using

HP-X485B tunable detector mount.
the crystal-controlled multiplier chain approach.
If one feeds some relatively low-frequency if into a common microwave mixer diode, such as a 1 N 23 , all sorts of things will come out: a comb, of sorts, is generated. The objective in this case is to get a detectable output in X -band within the tuning range of the Gunnplexer. Too many outputs within the tuning range can lead to confusion, however. One or two are sufficient. A single-output ćrystal calibrator would not be all that helpful. With it you could tune two Gunnplexers exactly on the same frequency, but that's not what you want. A $30-\mathrm{MHz}$ difference is needed between the two units. Two stable calibration signals are desired: one within the tuning range of each Gunnplexer but also 30 MHz apart from each other.

Tunable waveguide diode mount with TWT or BWO N connector.

DeMornay Bonardi waveguide detector mount.

the calibrator

Luck is with us. It just so happens that if you pump 146.52 MHz into a microwave mixer diode (in a suitable mount) you will get a 70th harmonic output of 10.2564 GHz . This is well within the tuning range of the $10.250-\mathrm{GHz}$ Gunnplexer and is probably within the tuning range of the $10.280-\mathrm{GHz}$ unit. The 69th harmonic (10.10988 GHz) and the 71st harmonic (10.40292 GHz) are outside the tuning ranges of both

PRD 613M coaxial mount with waveguide-to-N adapter.

Gunnplexers. This eliminates any possible confusion due to more than one calibration signal within the tuning range.
Most Amateurs should have no trouble coming up with a signal on 146.52 MHz . But we still need another signal in X -band 30 MHz away from the 70th harmonic of 146.52 MHz .
Luck is with us again. Another 2-meter fm frequency which is common in some parts of the U.S. will give us a signal fairly close to that which is needed. $146.94 \mathrm{MHz} \times 70$ equals 10.2858 GHz , a 29.4 MHz difference from the $146.52-\mathrm{MHz}$ harmonic. Two Gunnplexers calibrated to these signals would be tuned 29.4 MHz apart. A slight touch of the tuning knob would correct the $600-\mathrm{kHz}$ error. That's not much of an error at X -band!
This small error can be reduced or eliminated completely by one of several methods. If a crystalcontrolled 2 -meter handheld is being used, a crysal can be ordered on 146.94857 MHz for use with a standard $146.52-\mathrm{MHz}$ crystal. If your handheld has both .52 and .94 crystals in it already, they could be tweaked so that they are the required 0.4285714 MHz apart at 2 meters to be 30 MHz apart at X -band (70 x $0.4285714=30$). Synthesized radios set at 146.515 MHz and 146.945 MHz would result in only a $100-\mathrm{kHz}$ error at X-band. And of course, a VFO-controlled radio could be set at the desired frequencies too.

the diode multiplier

So far we have a simple source of $r f$ that will give us the signals needed at X -band when suitably multiplied. Now comes the tricky part, right? Wrong! A diode multiplier is amazingly easy to build, but first let's consider some of the readymade choices: waveguide detector mounts and coaxial detector mounts.
Waveguide detector mounts work best. That is, they can put out a rather strong signal at X -band when 2-meter of is fed into what is normally the output connector. A Hewlett-Packard X485B is a tunable X-band detector mount that accepts 1 N 21 1N23 type diodes, the latter being preferred. A mount that uses these inexpensive field-replaceable diodes, or crystals as they're often called, is very desirable. It is possible to burn out the diodes as a result of applying too much rf. The $1 \mathrm{~N} 21-1 \mathrm{~N} 23$ series diodes has a maximum incident CW rf power rating of 250 mW .
The Hewlett-Packard 423A is a common coaxial mount that works fine as a multiplier. The 2-meter rf is fed into the BNC connector that is normally the output connector. A waveguide-to- N connector adapter affixed to the mount's N connector serves as the X -band antenna. Note that the diode element is not the easily replaceable 1 N 23 type, so due care

fig. 2. Simple X-band waveguide amplifier mount uses WR-90 waveguide and BNC connectors modified as shown. An alternative fermale \mathbf{N} chassis mount may be made from a TWY or BWO amplifier. No need to drill out the connector in this design.
should be exercised!
A PRD 613 M is a coaxial crystal mount with an easy-to-replace diode. It does not have nearly the output of the HP coaxial mount but is usable.

Many other mounts will also work. Each of the above-mentioned mounts was obtained on the surplus market for about $\$ 20$. 1 N 23 diodes are very common in surplus microwave equipment and are available from surplus outlets such as Fair Radio Sales Co.* for about \$1 each.

A diode in a package with a pin on each end is needed for the homebrew mounts. Some diodes have a cap on one end. Be sure to get the diode with a removable cap (it just pulls off); some diodes have non-removable caps.

building a waveguide diode mount

I've built several mounts, both waveguide and coaxial. Precision machining is not required. A hacksaw, file, propane torch, drill, and two bits are the only tools needed to make a waveguide mount. The materials required are, first, a few inches of brass or copper X-band waveguide. Such waveguide is designated WR-90, RG-52U, or WG-16. It measures 1 x $1 / 2$ inch ($2.54 \times 1.26 \mathrm{~cm}$) outside dimensions. This may be found surplus or from an outlet such as Lectronic Research Laboratories, Inc. ${ }^{\dagger}$ A small piece of PC board or other solderable flat metal is needed to close one end of the waveguide. A one-hole mounting BNC female connector (UG-625B/U) serves as the 2 -meter rf input connector. A female chassis mount N connector supplies the center pin, which holds the 1N23 diode. A male N connector of the type that accepts small (RG-58/59) coax (UG$526 \mathrm{~B} / \mathrm{U}$) or a female chassis mount N connector removed from a surplus BWO or TWT amplifier serve as a fixture to hold the BNC connector assembly to the waveguide.

A horn antenna may be built on the open end of the waveguide, or a flange may be affixed there for the attachment of a horn. This will give greater range, but it's not necessary. A Gunnplexer will hear the signal from a waveguide mount multiplier without a horn from several feet away.

construction

Cut a piece of waveguide 2-3/8 inch ($6-\mathrm{cm}$) long or longer (refer to fig. 2). The length is not critical. File the ends square and remove any burrs. Drill a hole with a $3 / 32$-inch $(2.5-\mathrm{mm})$ bit in the center of the wide side of the waveguide $7 / 8$ inch (2.20 cm) from one end. This is the only critical dimension. Drill this
*1016 E. Eureka Street, P.O. Box 1105, Lima, Ohio 45802.
tAtlantic \& Ferry Ave., Camden, New Jersey 08104.

HP-423A coaxial mount.
hole straight through both walls of the waveguide. One of these holes serves as the socket for one end of the diode; the other hole is the pilot hole for the next one. Drill a $1 / 4$-inch $(6.4-\mathrm{mm})$ hole through the pilot hole. Remove the burrs inside the waveguide with a small triangle file. Clean the area around the $1 / 4$-inch ($6.4-\mathrm{mm}$) hole with sandpaper.

If you're going to use a male N connector (UG$536 \mathrm{~B} / \mathrm{U})$, remove the loose gasket, washers, and nut. They will not be needed. Drill a $1 / 4$-inch 16.4 mm) hole straight through the connector to enlarge the existing one. Remove any burrs. If a connector from a BWO or TWT amplifier is used, it will not be necessary to drill a hole, as the existing hole is large enough (fig. 2).

Center the connector face down over the $1 / 4$-inch $(6.4-\mathrm{mm})$ hole. Solder the connector to the waveguide, using a propane torch. Also solder the groove on the male N connector so that the connector body will no longer rotate. Let the assembly cool.

Next lay a one-hole-mount BNC nut on the top of the N connector, centered over the hole that the coax normally enters. Solder the nut to the connector, taking care not to get solder in the nut threads.

A piece of PC board or sheet metal $3 / 4 \times 1 / 8$ inch $(2 \times 3 \mathrm{~cm})$ is then soldered over the open end of the waveguide closest to the N connector.

Heat the center pin of a female chassis-mount N connector, such as a UG-58/ U , until it can be pushed out of the plastic dielectric.* Alternatively, the center
pin of Teflon dielectric N connector can be easily driven out with a hammer and pointed tool. Solder center pin to the protruding center pin of a one holemount BNC female connector (the slotted end of the pin faces outward).

It's now possible to push one pin of the mixer diode into the slotted pin on the BNC connector. Push the diode pin in about $1 / 16$ inch (2 mm). Guide the protruding diode through the hole in the N connector into the waveguide. The diode pin is mated with the $3 / 32$-inch $(2.5-\mathrm{mm})$ hole as the BNC connector is screwed into the BNC nut. Tighten finger-tight only.

It may be necessary to adjust the length of the slotted pin if the same type of connectors weren't used and the diode doesn't seat properly. The X-band waveguide diode mount is now complete.

simple coaxial diode mount

I've devised a coaxial diode mount that has to be one of the simplest ever (fig. 3). It is actually closer to a waveguide mount in the way it operates. All that's required is a female uhf barrel adapter (PL-258) or an N barrel (UG-29B/U), a shell from a PL-259, a

fig. 3. This coaxial diode multiplier mount is made from a female uhf barrel connector or an \mathbf{N} barrel (UG$\mathbf{2 9 B} / \mathrm{U}$), a shell from a PL-259 connector, a piece of bare copper wire, and a 1N23 diode - simple and effective.

[^8]15/16-inch ($24-\mathrm{mm}$) piece of No. 12 AWG (2.1-mm) bare copper wire, and a 1N23 diode. Soldering is optional.

If an N barrel is used, push one pin of the diode $1 / 16$ inch (1.2 mm) into one of the slotted pins of the barrel. If a uhf barrel is used, simply lay one end of the diode into one end of the barrel. Be sure that the metal end of the diode contacts the barrel pin. In some PL-258 models, the center pin is recessed enough so that the dielectric prevents contact.

Bend the wire into a \mathbf{Z} shape so that it will lie inside the uhf connector shell with the ends resting on the shoulder. The shell is started once the barrel threads with the diode are in place. Hold the wire with needle-nose pliers inside the shell over the diode pin. Tighten shell to push the wire down onto the pin of the diode (the wire ends may be soldered to the shell shoulder if desired). The 2-meter rf input is connected to the other end of the barrel. If a barrel adapter isn't available, a female chassis mount connector may be used. The 2-meter if input is then brought into the back of the connector through a coax cable.

numb i-f response

At this time, if your Gunnplexer and/or i-f is "numb," you may not be able to hear signals from any of the diode mounts described. A numb Gunnplexer is not uncommon. The Schottky diode mixer is easy to zap with stray voltages. Soldering to the ungrounded mixer connection pin, even with socalled "grounded" soldering stations, is a sure way to put your mixer diode in peril. The Schottky will not necessarily be completely open or shorted - it can remain halfway between and just be numb. Don't fret. If you blow it, just replace the Schottky diode with a 1N23. I've measured less than 1-dB noise figure degradation by substituting a 1N23WE for the standard Schottky.)

A numb i-f will also cause problems. Try to make the stage as hot as possible in the noise-figure department. This is one of the few ways to improve the over-all sensitivity of the Gunnplexer. It may be

Attenuator.
necessary to run the 2-meter level into your diode mount near the maximum $250-\mathrm{mW}$ level until improvements can be made in your system.

I've been able to detect the X-band output of the homebrew 1N23 coaxial multiplier using a Gunnplexer with a $17-\mathrm{dB}$ horn at a distance of 1 foot $(30 \mathrm{~cm})$ with a 2 -meter drive level as low as 10 mW . The range of the same setup using $250-\mathrm{mW}$ drive was over 50 feet (15 meters). This was a "hot" Gunnplexer and i-f. I was able to measure at least 2 dB of sun noise with a $21 / 2$-foot ($76-\mathrm{cm}$) dish.

attenuator

Whatever mount you choose, surplus or homebrew, an attenuator will be required to reduce the output of the 2-meter transmitter to a safe drive level. A 6-dB pad will decrease a 1 -watt signal to 250 mW . A 10-dB pad will yield 100 mW - a good choice.

A power attenuator isn't necessary, as the powerhandling ability of an attenuator is greatly increased if power is applied for a short duration. A 1/2-watt pad is fine for intermittent use at power levels encountered in 2-meter handheld transceivers.

As with detector mounts, attenuators are available on the surplus market or can be homebrewed. If you have a surplus pad in mind, be sure it's 50 ohms and that it will work at frequencies as low as 2 meters.

building an attenuator

A pi-network resistive attenuator requires only three resistors and is easy to construct. A table of attenuation levels and the required resistor values may be found in the ARRL Electronics Data Book.

I've built a $10-\mathrm{dB}$ pad using two $1 / 2$-watt, 100 -ohm resistors and a $1 / 2$-watt, 68 -ohm resistor, plus two PL-259 connectors. Actually, a $10-\mathrm{dB}$ pad requires 96.2 -ohm and 70.7 -ohm resistors, but the standard values I use yielded 9.5 dB with excellent VSWR. Construction details are shown in fig. 4.

calibrator system operation

The diode multiplier mount is connected through the attenuator to a 2-meter transmitter set at 146.52 or 146.94 MHz . The mount is pointed at the Gunnplexer antenna, and the varactor voltage is tuned until the calibration signal is found. You'll probably hear a loud audio feedback squeal when the signal is found.

Talking into the 2-meter rig should result in a copyable signal from the Gunnplexer receiver. It may be hard to believe, but you're actually talking on X-band with your 2-meter rig! Be sure to ID properly.

Mountaintop operation might go like this: Station A lets his $10.250-\mathrm{GHz}$ Gunnplexer warm up a few minutes, then he tunes it to find the signal from his

HUSTLER ANTENNAS
5BTV $\quad 5$-Band trap vertical $10-80 \mathrm{~m}$., reg. $\$ 139.95 \ldots . . \$ 125.95$ 4BTV $\quad 4$-Band trap vertical $10-40 \mathrm{~m}$., reg. $\$ 109.95 \ldots .$. BM-1 Bumper mount, reg. \$18.95 17.06
MO-1 Mast, fold-over, deck mounting, reg. \$22.95... 20.66
MO-2 Mast, fold-over, bumper mount, reg. $\$ 22.95 \ldots .20 .66$ RM-75 Resonator, 75 meters, 400 watt, reg. $\$ 18.95 \ldots \quad 17.06$ RM-40 Resonator, 40 meters, 400 watt, reg. $\$ 16.95 \ldots \quad 15.26$ RM-40S Super resonator, 40 meters, KW, reg. $\$ 24.95 \ldots 22.46$ RM-20 Resonator, 20 meters, 400 watt, reg. $\$ 14.95 \ldots .13 .46$ RM-20S Super resonator, 20 meters, KW, reg. \$21.95.... 19.76 RM-15 Resonator, 15 meters, 400 watt, reg. $\$ 10.95 \ldots 9.86$ RM-10 Resonator, 10 meters, 400 watt, reg. $\$ 10.95 \ldots \quad 9.86$ CG-144 Mobile 2 meter colinear, w/o mount, reg. \$28.95. 26.06
CGT-144 2 meter colinear w/trunk mount, reg. $\$ 45.95 \ldots$.

CW Filter, 8 pole IC.................................. . . $39.95 \quad 2.00$
ALSO IN STOCK
Antenna Components - Larsen Antennas
Centurion International Rubber Duck Antennas
WRITE FOR A FREE COPY OF OUR CATALOG

All items FO. B Lincoln, $\$ 1.00$ minimum shipping. Prices subject to change without notice. Nebraska residents please add 3% tax

Visa or MasterCharge orders welcome!
Call or write Cal Crystal NOW! Call or write Cal Crystal NOW!

CAL CRYSTAL

California Crystal Lab., Inc. 1142 North Gilbert Street Anaheim, California 92801 (714) 991-1580

fig. 4. A 10-dB attenuator, again made from coax connectors. Three resistors form a pi network.
diode-mount, which is fed with a $146.52-\mathrm{MHz}$ signal. (The mount is held several feet in from of the Gunnplexer antenna to avoid frequency pulling of the Gunn oscillator.)
Station B, on another mountaintop, does the same with his $10.280-\mathrm{GHz}$ Gunnplexer using 146.94 (or 146.94857 MHz .) The two stations then may concentrate their efforts on aiming, varying their varactor voitage only 100 mV or so. Extra 2-meter handheld transceivers help establish communications.

The stations must be sure ahead of time that their respective Gunnplexers (a) will tune to, and hear, the calibrator signals, and (b) are not tuned to the signal image.

other uses

The calibrator does not, of course, have to be used only on .52 and .94 in the 2 -meter band. The Gunnplexer may be calibrated throughout the $0-20-\mathrm{Vdc}$ tuning range by selecting other 2 -meter frequencies that will multiply into X -band.

The diode multiplier mount may also be used as a detector mount. I can measure well over 1 volt across the diode when either homebrew waveguide or coaxial mount is irradiated by the Gunnplexer output at close range. This is a very easy way to check the mount and the Gunnplexer oscillator.

acknowledgments

I'd like to thank WA6HCD and WA6IKO for their help in my X -band endeavors, as well as W6OAL for reviewing the manuscript.

reference

1. James R. Fisk, W1HR, ' $10-\mathrm{GHz}$ Gunnplexer Transceivers - Construction and Practice." ham radio, January, 1979, page 26.
ham radio

Save up to ${ }^{5} 25$. The greatest scanner rebate ever offered on America's leading line. Bearcat Scanners.

Now you can be a part of all the on-thescene police calls, fire calls, weather warnings, and emergency information broadcasts the second they happen-and receive up to a big $\$ 25$ factory rebate-on Bearcat Scanners.

Choose from 11 models.

This special rebate offer is good on eleven of the most popular Bearcat Scanner models. No-crystal fully synthesized Bearcat Scanners. Multi-band crystal Bearcat Scanners. Pocket sized hand-held Bearcat Scanners. One to fit any need. Any lifestyle. Any price range.
\$25 - \$20 - \$15 - \$10 - \$5.
$\$ 25$ rebates: Bearcat 300, America's most sophisticated

- 1981 Masco Corp of Indiana
scanner. Bearcat 250 with 50 channels and search, store/recall. Bearcat 220 that tunes in AM aircraft and FM public service. Bearcat 210XL, America's best selling scanner. $\$ 20$ rebate: Bearcat 160 with smooth keyboard. $\$ 15$ rebate: Bearcat 150, the new low priced no-crystal scanner. \$10 rebates: Bearcat III and Bearcat 12, popular crystal scanners. Bearcat Four-Six Thin Scan, ${ }^{\text {TM }} 4$ band 6 channel hand-held scanner. $\$ 5$ rebates: Bearcat 5, low-priced crystal scanner. Bearcat Thin Scan, ${ }^{\text {TM }}$ the shirt pocket scanner.

Rebate expires May 15, 1981.

See your Bearcat Dealer for rebate details*' Then pick your kind of Bearcat Scanner and save up to $\$ 25$.
*Rebate offer good on consumer purchases made between April 1, 1981 and May 15, 1981. Offer good only in U.S.A. Void where taxed or prohibited by law. Restricted to one rebate per customer regardless of the number of scanners purchased.

Electra Electra Company
Division of Masco Corp of Indiana 300 East County Line Road International Business Office Suite 102, 1828 Swift North Kansas City. Missouri 64116

px FORECASTER

Garth Stonehocker, K0RYW

last-minute predictions

April is a transition month. Propagation will be affected by solar activity that is influenced by the equinox period of sun/earth alignment (as mentioned last month). The periods from April 7 through April 14 and April 20 through April 23 may be geomagnetically disturbed. The beginning of the first period is expected to be disturbed by coronal-hole solarwind emergence, then by solar-flarereleased particles for the remainder of the first time period and for the entire second time period. The effects may be strong, since April is a continuation of the equinox period. However, the coronal-hole effect will not be as strongly developed as it will be a year from now, so the probability is not high that this disturbance will occur.

DX conditions will probably be very good in April because of the solarcycle level, and activity will be high because of the close proximity of the equinox season. The ionosphere is proportioned for most of the ionization to favor the F region and high maximum usable frequencies (MUF)

- therefore the higher hf bands. The winter generally has the sharpest daily MUF peaks, rising highest in February, March, or April in most years. Summers have the lower daily MUFs but are spread out throughout the greater number of hours of daylight. So, through this summer and next winter, the solar flux will probably be slightly lower than it is now. And it is then expected to continue to decrease as the end of the crest of cycle 21 begins a definite downward trend toward the minimum, about 1987.

band-by-band forecast

Six meters should provide frequent band openings with a peak during the early afternoon hours on many days. Trans-equatorial north-south paths will be the best. Your guide to possible openings will be strong openings on 10 meters and high values of solar flux.

Ten and fifteen meters will be loaded with good DX signals from morning until early evening hours almost every day. Times of geomagnetic disturb-
ance will limit the number of signals heard, but listen carefully - they can be from very unusual places. Fifteen meters should be open later in the day than 10 meters. So, hit 10 first and finish off with 15 . The lengthening of the daylight will be noticed as these bands open up a little sooner and stay open longer in the day.

Twenty meters will be the main daytime DX band, as it is almost always open to some part of the world. It opens to the east as the sun rises and extends into the late evening hours to the west. Geomagnetic disturbances do not affect the band as much as the higher ones, but still look for unusual trans-equatorial DX locations to be coming through once in a while. Onehop trans-equatorial DX of 5,000 to 7,000 miles $(8,000$ to $11,200 \mathrm{~km})$ may be possible in the late evening hours during some of these unusual conditions.

Forty and eighty meters will have much short skip (750 miles or 1,200 km) during daylight hours and turn to DX after dark. Eighty-meter DX will more often be taken over by noise. Therefore, 40 meters will become the best nightime DX band. Long skip (2,000 miles or $3,200 \mathrm{~km}$) will open to the east soon after sundown, swing more to the south to Latin America about midnight, and end up to the Pacific areas during the hour or so before dawn. Some nights these bands will be as good as during the winter DX season. Watch the spring storm fronts mentioned last month. The coastal regions usually have the edge for working the rare $D X$ on these bands. Don't let that stop you mid-U.S.A. DXers.

One-sixty meters will probably have many nights that remind one of last summer's noise. However, many good nights are left to work DX before this summer's noise comes to stay. Many stateside stations are fair game as DX on this band during this season.
ham radio

	윽	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	앙	윽	$\stackrel{\sim}{1}$	$\stackrel{\square}{\square}$	$\stackrel{\text { 가 }}{ }$	아	1	1	1	1	$\stackrel{*}{+}$	$\stackrel{*}{\circ}$		11	1	1	$\stackrel{*}{\text { N }}$	$\stackrel{\sim}{\sim}$	菅	$\stackrel{\sim}{\sim}$	윽	nvar
3	은	\bigcirc	은	윽	$\stackrel{*}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	号	산	간	안	$\stackrel{\sim}{\sim}$	은	N	1	1	1	윽	$\stackrel{\sim}{\sim}$	응	$\stackrel{\sim}{\square}$	$\stackrel{*}{0}$	
	1	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\star}{\circ}$	은	은	$\stackrel{\text { ® }}{ }$	읏	$\stackrel{*}{+}$	앙	$$	$$	산	N	Ω	윽	\bigcirc	$\stackrel{*}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	1	1	1	anvาvzz mın
	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	온	든	안	안	$\stackrel{\sim}{\sim}$	안	$\stackrel{\text { 간 }}{ }$	$\stackrel{\text { 가 }}{ }$	1	1	1		1	1	1	$\stackrel{\sim}{\sim}$	은	은	\bigcirc	응	volourinv
	\bigcirc	\bigcirc	안	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	은	든	$\stackrel{*}{\circ}$	슨	$\stackrel{*}{*}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	안	악	윽	윽	응	응	\bigcirc	윽	윽	윽	NV3881470
	\bigcirc	악	$\stackrel{\sim}{\square}$	1	1	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	은	오	응	1	1	은	$\stackrel{*}{\sim}$	윽	윽	윽	윽	은	윽	은	\bigcirc	\bigcirc	은	viruv
	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	든	은	$\stackrel{\text { 가 }}{ }$	은	$\stackrel{\sim}{2}$	슨	안	은	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	\sim	$\stackrel{\sim}{-}$	$\stackrel{n}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{*}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{-}$	элочпэ
	$\stackrel{\sim}{\square}$	1	1	1	산	은	안	1	1	1	1	아	은	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\circ}$	Ω	$\stackrel{\square}{\square}$	1	1	1	1	1	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	
蚠	8	$\stackrel{8}{\circ}$	$\stackrel{8}{\circ}$	$\stackrel{8}{+}$	$\stackrel{8}{\square}$	$\stackrel{8}{\text { ¢ }}$	8	$\stackrel{8}{\text { ¢ }}$	8	$\stackrel{8}{7}$	$\stackrel{8}{6}$	$\stackrel{8}{0}$	$\stackrel{8}{-}$	$\stackrel{8}{\infty}$				$\stackrel{8}{\text { ¢ }}$	8	8	8	8	8	8	
5	$\stackrel{8}{6}$	8	8	8	8－8	$\stackrel{\text { 8 }}{+}$	$\stackrel{8}{\text { ¢ }}$	8	$\stackrel{8}{\sim}$	8	$\stackrel{8}{4}$	8	8	$\stackrel{8}{1}$	¢			$\stackrel{\circ}{\ddot{\circ}}$	8	8	$\stackrel{8}{4}$	8	\％	8	
$\frac{3}{2}$	$\stackrel{\text { LT }}{\sim}$	\bigcirc	O	\bigcirc	$\stackrel{\sim}{-1}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\square}$	$\begin{array}{\|c} * \\ \stackrel{\rightharpoonup}{*} \end{array}$	산	1	1	1	안	앗	N	N		$\stackrel{*}{\circ}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{n}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	NVod
	\bigcirc	\bigcirc	$\stackrel{*}{0}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	간	근	슨	$\stackrel{\sim}{\sim}$	은	$\stackrel{\sim}{\sim}$	응	$$	앙	1	1	$\stackrel{\square}{\square}$	은	\bigcirc	윽	
	윽	\bigcirc	$\stackrel{*}{*}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{*}{\mathrm{D}}$	$\stackrel{*}{\underset{\sim}{\circ}}$	$\stackrel{*}{\sim}$	온	$\begin{aligned} & * \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{*}{0}$	$\begin{aligned} & * \\ & \hline \\ & \hline \end{aligned}$	은	$\stackrel{0}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	\sim	$\stackrel{1}{\sim}$	\bigcirc	응	윽	\bigcirc	윽	ant7v3z M
	아－	$\stackrel{1}{\square}$	$\stackrel{\sim}{-}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\text { 아 }}{ }$	$\stackrel{\text { 글 }}{ }$	$$	$\begin{array}{\|l\|} \hline \stackrel{*}{0} \\ \hline \\ \hline \end{array}$	$$	$\begin{array}{\|l\|} \hline * \\ \hline \dot{\theta} \\ \hline \end{array}$	앙	안	은	1	1	1	1	\bigcirc	윽	악	은	\bigcirc	윽	voliourin
¢	응	앙	은	악	\bigcirc	$\stackrel{*}{*}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	오	은	슨	은	$\stackrel{1}{\square}$	\sim	9	윽	\bigcirc	악	윽	윽	\bigcirc	은	
$\sim \uparrow$	은	9	$\stackrel{\sim}{\square}$	1	1	1	$\stackrel{n}{\square}$	$\stackrel{\sim}{\square}$	안	잉	산	1	1	1	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{9}$		$\begin{aligned} & \underset{\sim}{*} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \stackrel{*}{\sim} \\ & \sim \end{aligned}$	$\stackrel{*}{*}$	\bigcirc	\bigcirc	\bigcirc	윽	＊ロ｜ษリ
	$\stackrel{*}{\sim}$	은	은	은	슨	은	안	읏	응	소	오	읏	N	$\stackrel{ \pm}{\circ}$	$\stackrel{\sim}{\sim}$	$\stackrel{\wedge}{\mathrm{N}}$	\bigcirc	$\stackrel{\sim}{2}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\square}$	3才04n
	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$	$\stackrel{*}{\circ}$	$\stackrel{\text { 가 }}{ }$	글	1	1	1	1	산	안	$\stackrel{\sim}{\sim}$	산	\sim	$\stackrel{\sim}{n}$	$\stackrel{\square}{\square}$	1	1	1	1	$\stackrel{\square}{\square}$	
宾	8	8	$\stackrel{8}{8}$	$\stackrel{8}{\circ}$	8	$\stackrel{8}{\text { ¢ }}$	$\stackrel{8}{\square}$	\％	8	8	8	$\stackrel{8}{4}$	$\stackrel{8}{6}$	$\stackrel{8}{8}$	$\stackrel{8}{-}$	¢	8	$\stackrel{8}{0}$	$\stackrel{8}{=}$	$\stackrel{8}{9}$	8	$\stackrel{8}{\mathrm{~N}}$	8	8	

NVdVr

viruwr s

\forall VוצנV S
： $\underset{\sim}{\Omega}$ 옹

5

Questions and Answers

where in the world?

I have heard stations on the air signing "----/MM region 1," How do you know where to aim your beam for the various regions? Is there a map available? - John Engelien, N2BSD.

Almost any publication that includes the FCC Rules and Regulations, part 97 (Amateur Radio Service) has a map showing all three ITU regions. A reproduction is shown in fig. 1.

six meters

I hear very little about the 6-meter band, except stories about TVI and other problems. Is 6 meters the "black sheep" of the radio frequen-
cies? Is it dependable for medium to long distances, and what is the dominant mode? - Peter Eldredge, KA1FJN.

Six meters is avoided in many areas of the country, especially near the large cities that have Channel 2 TV. Most TV sets cannot tell the difference between a $50-\mathrm{MHz}$ signal and a $56-\mathrm{MHz}$ one, so TVI is a real problem. (The problem can be resolved, but requires much effort in building filters, cleaning up rigs, and often much education of your neighbors - some hams figure it isn't worth the trouble.) Then, too, Channel 2 TV transmitters put out a lot of garbage below their allocated band, and that gets into Amateur receivers and further discourages any would-be DXers.

However, if Channel 2 is not avail-
able locally, then 6 meters can be a fascinating and useful band. It behaves much in the same manner 10 meters does, with good local coverage by ground wave in the evening. And often tropospheric and ionospheric skip creates openings that can reach to hundreds or thousands of miles. Like 10, however, the band varies with the sunspot activity, so will be less prone to DX openings in four or five years than it is right now.

Modes in use are principally CW and SSB on the low end, with a few of the "a-m forever" crowd around 50.5 MHz or so, and fm and repeaters in the upper two-thirds. There is a considerable amount of model-control activity to be found on the high end, using channels that fit nicely between repeater slots.

New low profile design.

Abstract

Here is the famous Palomar Engineers high power tuner in a new compact size. Only $51^{\prime \prime \prime} \times 14^{\prime \prime} \times 14^{\prime \prime}$ yet it has all the features, works from 160 through 10 meters, and works with coax, single wire and balanced lines. And it lets you tune up without going on the air!

WE INVESTIGATED

All tuners lose some if power. We checked several popular tuners to see where the losses are. Mostly they are in the inductance coil and the balun core.
So we switched from \#12 wire for the main inductor to $1 / 4^{\prime \prime}$ copper tubing. It can carry ten times the if current.

IMPOSSIBLE FEAT

The biggest problem with tuners is getting them tuned up. With three knobs to tune on your transceiver and three on the tuner and ten seconds to do it (see the warning in your transceiver manual) that's $11 / 2$ seconds per knob.
We have a better way; a built-in 50 -ohm noise bridge that lets you set the tuner controls without transmitting. And a switch that lets you tune your transmitter into a dummy load. So you can do the whole tuneup without going on the air. Saves that final; cuts QRM.

For further details on this exciting new high-power low-loss, easy-to-use tuner send for our new brochure. Or visit your Palomar Engineers dealer.

Model PT-3000, \$349.50. To order send $\$ 10.00$ shipping/handling. California residents add sales tax.

no DX?

We have recently hit the peak of the sunspot cycle, and DX is great. What does the future look like for $D X$? Will there be any good $D X$ to be found, and if so, on what bands? How about the new bands we got at WARC 79? - Kevin Foley.

DX will continue to be good for some time to come. True, we passed the peak in 1979, but it doesn't all stop abruptly. The downward slope of a sunspot cycle is gradual and filled with small bumps and ripples. DX conditions will decrease in the same manner. There will be excellent days, and dismal days, and it will keep our DX Forecaster on his toes predicting which will be which.

The openings will become a bit shorter, so you will have to be alert and ready to catch the good ones. Also, the openings will tend to become less frequent on the higher bands, but there'll always be something on 80, 40, and 20. Even 15 meters will have good activity for some time. Ten is good for two or three years before you'll notice much of a drop in openings.

The new bands will show a similar pattern, with the lowest one (10 MHz) being more reliable than our present 14 MHz , and the higher ones opening later and closing earlier. However, one of the most useful things we Amateurs can do with the new bands is to "fill in the gaps" in knowledge of propagation by careful observation and use of 10,18 , and 24 MHz .

So, don't despair. Good equipment and sharp operating skills will pay off during times of low sunspot activity.

remote SWR?

VSWR-meter instruction books say that SWR should be measured at the antenna because the coaxial cable can alter the readings, giving a better indication at the transmitter than actually exists at the antenna.

Since I use a matchbox, should I remote the SWR-sensing unit to the
antenna for better accuracy? - Terry J. Taylor, WB5JFM.

To put it bluntly, NO!
Presumably, the matchbox is in your radio room, where you can reach the controls. If you were to put the SWR meter at the antenna it would see no change at all, no matter what you did to your matchbox (except to show wild fluctuations because there was more or less power getting through the matchbox).

For example, suppose you are using 50 -ohm coax cable and the SWR meter is at the antenna. Also suppose the antenna is not properly adjusted (too long or too short). No amount of knob twisting on the matchbox will make any difference at the antenna. The 50 -ohm cable still presents 50 ohms to the matchbox down in the radio room.

The SWR meter should be connected between your transmitter and the matchbox, after your antenna has been properly adjusted (see below). The purpose of the SWR meter, when connected as just described, is to provide an indication of a proper impedance match at the transmitter.

The time to put the SWR meter at the antenna end of the cable is when you are building your antenna, or tuning it up the first time you put it in the air. With the SWR meter in place and the transmitter sending low power up the line (just enough that you can get the calibrate function on the SWR meter to work right), work on that antenna. Shorten it, lengthen it, put in tuning stubs, a matching network, or whatever else the antenna handbooks say to do to it, but somehow make that SWR go down. Once you have a reasonable SWR, take the meter out of the line and put it down at the station between the matchbox and the rig as an aid to monitoring power output. If the SWR creeps up a bit from one end of the band to the other, don't worry about it - use the matchbox only to keep your rig happy - and enjoy your QSOs.
ham radio

When it comes to

 AMATEUR RADIO QSL's...it's the
ONLY BOOK!
US or DX Listings

1981/berse

NOW READY!
Here they are! The latest editions. Worldfamous Radio Amateur Callbooks, the most respected and complete listing of radio amateurs. Lists calls, license classes, address information. Loaded with special features such as call changes, prefixes of the world, standard time charts, worldwide QSL bureaus, and more. The U.S. Edition features over 400,000 listings, with over 100,000 changes from last year. The Foreign Edition has over 300,000 listings, over 90,000 changes. Place your order for the new 1981 Radio Amateur Callbooks, available now.

	Each	Shipping	Total
\square US Callbook Forergn Callook	$\$ 17.95$	$\$ 2.55$	$\$ 20.50$

Order both books at the same time for $\$ 37.45$ including shipping.
Order from your dealer or directly from the publisher. All direct orders add $\$ 2.55$ for shipping. Illinois residents add 5% sales tax.

	SPECIAL LIMITED OFFER!
	Amateur Radio
	only \$2.50 postpaid

Pegasus on blue field, red lettering. $3^{\prime \prime}$ wide x $3^{\prime \prime}$ high. Great on jackets and caps. Sorry, no call letters.

ORDER TODAY!

Dept.

925 Sherwood Drive
Lake Bluff, IL 60044, USA

Top-Notch.

VBT, notch, IF shift, wide dynamic range

TS-830S

Now most Amateurs can afford a highperformance SSB/CW transceiver with every conceivable operating feature built in for 160 through 10 meters (including the three new bands). The TS-830S combines a high dynamic range with variable bandwidth tuning (VBT), IF shift, and an IF notch filter, as well as very sharp filters in the $455-\mathrm{kHz}$ second IF, Its optional VFO-230 remote digital VFO provides five memories.
TS-830S FEATURES:

- 160-10 meters, including three new bands
Covers all Amateur bands from 1.8 to 29.7 MHz (LSB, USB, and CW), including the new 10,18 , and $24-\mathrm{MHz}$ bands. Receives WWV on 10 MHz .
- Wide receiver dynamic range

Junction FETs (with optimum IMD characteristics and low noise figure) in the balanced mixer, a MOSFET RF amplifier operating at low level for improved dynamic range (high amplification level not needed because of low noise in mixerl, dual resonator for each band, and advanced overall receiver design result in excellent dynamic range.

Variable bandwidth tuning (VBT) Continuously varies the IF filter passband width to reduce interference. VBT and IF shift can be controlled independently for optimum interference rejection in any condition.
IF notch filter
Tunable high-Q active circuit in $455-\mathrm{kHz}$ second IF, for sharp, deep notch
characteristics.

- IF shift

Shifts IF passband toward higher or lower frequencies laway from interfering signals) while tuned receiver frequency remains unchanged.

6146B final with RF NFB

Two 6146B's in the final amplifier provide 220 W PEP (SSB)/180 W DC (CW) input on all bands. RF negative feedback provides optimum IMD characteristics for high-quality transmission.

Built-in digital display

Six-digit large fluorescent tube display. backed up by an analog dial. Reads actual receive and transmit frequency on all modes and all bands. Display Hold (DH) switch.

- Adjustable noise-blanker level Built-in noise blanker eliminates pulse- type (such as ignition) noise. Front-panel threshold level control.

Matching accessories for fixed-station operation:

- SP-230 external speaker with selectable audio filters
- VFO-230 external digital VFO with $20-\mathrm{Hz}$ steps, five memories, digital display - AT-230 antenna tuner/ SWR and power meter - MC-50 desk microphone

Other accessories not shown:

- TL-922A linear amplifier
- SM-220 Station Monitor
- PC-1 phone patch
- HC-10 digital world clock
- YG-455C $(500-\mathrm{Hz})$ and YG-455CN $(250-\mathrm{Hz}) \mathrm{CW}$ filters for $455-\mathrm{kHz}$ IF - YK-88C $(500-\mathrm{Hz})$ and YK-88CN $(270-\mathrm{Hz}) \mathrm{CW}$ filters for $8.83-\mathrm{MHz} \mathrm{IF}$ - HS-5 and HS-4 headphones
- MC-30S and MC-35S noise-cancelling hand microphones

Various IF filter options
Either a $500-\mathrm{Hz}(\mathrm{YK}-88 \mathrm{C}$) or $270-\mathrm{Hz}$ (YK-88CN) CW filter may be installed in the $8.83-\mathrm{MHz}$ first IF, and a very sharp $500-\mathrm{Hz}(\mathrm{YG}-455 \mathrm{C})$ or $250-\mathrm{Hz}(\mathrm{YG}-455 \mathrm{CN})$ CW filter is available for the $455-\mathrm{kHz}$ second IF .

- More flexibility with optional digital VFO VFO- 230 operates in $20-\mathrm{Hz}$ steps and includes five memories. Also allows splitfrequency operation.' Built-in digital display. Covers about 100 kHz above and below each $500-\mathrm{kHz}$ band.
- Built-in RF speech processor For added audio punch and increased talk power in DX pileups.

RIT/XIT

Receiver incremental tuning (RIT) shifts only the receiver frequency, to tune in stations slightly off frequency. Transmitter incremental tuning (XIT) shifts only the transmitter frequency.

- SSB monitor circuit

Monitors IF stage while transmitting, to determine audio quality and effect of speech processor.
More information on the TS-830S is available from all authorized dealers of Trio-Kenwood Communications. Inc., 1111 West Walnut Street, Compton. California 90220.

Hear there and everywhere.

Easy tuning, digital display, professional quality

The R-1000 is an amazingly easy-tooperate, high-performance, communications receiver, covering 200 kHz to 30 MHz in $\mathbf{3 0}$ bands. This PLL synthesized receiver features a digital frequency display and analog dial, plus a quartz digital clock and timer. Its easy-singleknob tuning and high sensitivity, selectivity, and stability make the $\mathrm{R}-1000$ a favorite amongst Radio Amateurs, shortwave listeners, engineers, maritime communicators, and others who demand high quality in a general-coverage communications receiver.

R-1000 FEATURES:

Continuous frequency coverage from

 200 kHz to $\mathbf{3 0 \mathrm { MHz }}$Receives shortwave, medium-wave, and long-wave bands.

- 30 bands, each 1 MHz wide

Easy-to-use band switch with large knob

- Five-digit frequency display and

analog dial

Accurate digital display with $1-\mathrm{kHz}$ resolu tion and illuminated analog dial with precise gear dial mechanism.
Built-in quartz digital clock with timer Precise 12 -hour clock with AM and PM indicators. Timer turns on radio for scheduled listening, and even controls a recorder through remote terminal.

- Up-conversion PLL, wideband RF circuits
Provide exceptional performance and easy operation without the need for bandspread, preselector, or antenna tuning. Excellent sensitivity, selectivity, and stability.
- Step attenuator
$0-60 \mathrm{~dB}$ in $20-\mathrm{dB}$ steps. Prevents overload.
- Three IF filters for optimum AM, SSB, CW
$12-\mathrm{kHz}$ and $6-\mathrm{kHz}$ (adaptable to $6-\mathrm{kHz}$ and $2.7-\mathrm{kHz}$) filters for AM wide and narrow. and $2.7-\mathrm{kHz}$ filter for high-quality SSB (USB and LSB) and CW reception.
Communications-type noise blanker Eliminates ignition and other pulse-type noise. Superior to noise limiter.
Recording terminal
For external tape recorder.
- Tone control

For desired audio response.

- Built-in 4 -inch speaker

For quality sound reproduction.

- Dimmer switch

Controls S-meter and other panel lights and digital-display intensity.

- Three antenna terminals

Wire terminals for 200 kHz to 2 MHz and 2 MHz to 30 MHz . Coax (SO-239) terminal for 2 MHz to 30 MHz .

- Selectable operating voltage AC voltage selector for 100, 120, 220 and 240 VAC . Also adaptable to operate on 13.8 VDC (with optional DCK-1 kit).

More information on the R-1000 is available from all authorized dealers of Trio-Kenwood Communications, Inc.. 1111 West Walnut Street, Compton. California 90220.

HC-10 Digital World Clock

- Two 24-hour displays with quartz time base
Right display: local (or UTC) hour, minute, second, day. Left display: month. date, world time in various cittes, memory time (GSO starting time). and time difference lin hours from UTC).
- Time in 10 cities around the world Plus two additional programmable time zones.
- "TOMORROW" and "YESTERDAY" indicators
- Memorizes present time And recalls later, for logging purposes.

- High accuracy

± 10 seconds/month
©
KENWDOD
... pacesetter in amateur radio

Matching accessories:

- SP-100 external speaker
- HS-5 deluxe headphones

Other accessories not shown:

- HS-4 headphones
- DCK-1 easy-to-install modification kit for 12-VDC operation

Rx for a Bad Day

Is it one of those dull gloomy days when even the birds are walking, and it's not a fit day to go out and put up that new sloper or inverted vee antenna you wanted to try? DX isn't coming through yet because the MUF isn't right, some jerk squirrel keeps kerchunking the repeater or plays tunes on the Touchtone ${ }^{*}$ so that two meters isn't fun. Maybe the wind played havoc with your beam last night and now it looks like a limp pretzel or some modern art object, or maybe your rig blew up in the middle of a QSO or just before that sked with a rare station in some far off land.
Any fool knows all these things aren't going to happen to you at once. But if it is "one of those days' maybe you can just forget the whole mess and brighten your and someone else's day a little by taking some time to think of a fellow ham you admire and respect to nominate for Dayton's "Amateur of the Year Award" for 1981. No, it's not too early to think about it. It does take a little time and effort to nominate some one for "Amateur of the Year." What is the stature of this individual that we seek for recognition each year at Dayton? First, he or she will be a well-respected person in the community; a leader, not only in amateur radio activity, but in civic activity as well. He will probably be licensed for at least 10 years or more for it is long term overall excellence in amateur radio that we are looking for.
His contribution to amateur radio may be in any of the hobby related areas. Possibly his greatest contribution is in the engineering field of our hobby, or his expertise may be in antenna design, some new type of modulation or an improvement to existing design, etc. Maybe he has contributed greatly to improvement of amateur regulations or possibly his contribution is the legal field of

our hobby, a very important one these days. Get the idea? In short, an outstanding individual and amateur.
In 1974, another award was established, the "Special Achievement Award." This award is just what it would seem to be - an award for one-time special event or specialized activity by an amateur or group of amateurs. This activity may be in the engineering field - QRP - DXpeditions - net activity - emergency work or any one-time outstanding activity related to 'the amateur radio hobby.

Nominees for both of these awards may be from anywhere in the world, not just the U.S.A.

So! Don't just sit back and say, "Gee!, somebody ought to nominate that guy for "Amateur of the Year," Don't wait for George to do it. Give us all the details you can gather, especially activities that are directly attributable to him or her.
All nominations are carefully reviewed and are saved from one year to the next for future consideration and to allow some nominees to develop to their full potential. All nominations are considered for both awards, and the awards will be presented at the 1981 HAMVENTION Banquet.
So, have you nominated some one in the past? You may want to renominate him with update on recent activities or just send in update information on his latest accomplishments.

Do it now! Besides you may win a set of free tickets to the "HAMVENTION" for your nominee and yourself.
For more information or nomination blanks (not mandatory) write to the address below:

HAMVENTION	Bob Roettele, W8UNV
P.O. BOx 44	or
Awards Chairman	
Dayton, Ohio 45401	1299 Hanes Road
Attention: Awards Committee	Xenia, Ohio 45385

Hams, 2-way and commercial broadcasters depend on THE MAINE SOURCE for 2 -year-warranted RF products-quality meters, couplers and loads.

Call us, toll-free, for the name of your local distributor. Our world-wide network is ready to serve you . . . with a smile.

Standing waves

 are a breeze!Measuring VSWR is as simple as falling off a surfboard. Forward power up to 50 kW and reflected power down to 100 mW - and even below - are read directly from our 1000-A Directional RF Meter. A convenient chart converts them to VSWR.

New England integrity and craftsmanship . as traditional as Maine lobster.

RAYMOND, MAINE 04071 / 207-688-4B8B / 800-541-9678 / TWX 710-229-6890

Harry Electronics

500 Ledyard St. (South) Hartford, Ct. 06114
203-527-1881

TEN-TEC DELTA 580

160-10 Meter including three new hf bands (10, 18 \& 24.5 MHz) Low noise double conversion design. 200 watts input on all bands 100% duty cycle. Offset tuning. Full break-in. Built-in VOX and PTI.
$\$ 869.00$
Call for quote

The JR. MONITOR
The JR. MONITORTM has it all wrapped up in one neat package All metal cabinet $51 / "^{-w}$
$\times 2^{1} / c^{\prime \prime} n \times 6^{\prime \prime}{ }^{\prime}$ Think of the
 unlimited possibilities you'll have for experimenting with dozens of antennas! Covers $1.8-30 \mathrm{MHz}$.

$\$ 79.50$

Call for quote

The BIG DUMMY
A full 1 kW dummy load, the Big Dummy TM otters a fiat SWR, tull Frequency coverage from 1. 8-300 MHz , and high grade industrial cooling oil furnished with the unit. The DenTon Big Dummy is built to last it comes fully assembled and warrantied.

$\$ 39.50$
Call tor quote

TEN-TEC ARGONAUT (515)

$80-10$ Meters. Full break-in. 5 watts input. Built-in T. V. . filter Restyled cabinet, easy to read controls. The premier QRP rig.
$\$ 469.00$
Call tor quote

The MT-3000A
Dentron's MT-3000ATM does
 more than tune coax random wire, and balanced feed antennas There is a builtin antenna selector switch tor selecting five different antennas, plus lets.
you tune your station off air through a 250 watt dummy load. you tune your station off ait through a 250 watt dummy lad Guar in-line forward and reflected watt meters protenna tuning Switchable between 200 and 2000 watts. Continuous tuning from 160 through 10 meters with power handling capability in excess of 3 kW PEP.
$\$ 399.50$
Call for quote

3 $\bar{\square}$

Only TEN-TEC Offers A Money Back Guarantee.

See your nearest participating dealer for details on this new no-risk trial offer.

Alabama
Alabama Treasure Hunter
Huntsville
Long's Electronics
Birmingham
California
Ham Radio Outlet
Anaheim
Ham Radio Outlet
Burlingame
Ham Radio Outlet
Oakland
Ham Radio Outlet
San Diego
Ham Radio Outlet
Van Nuys
Colorado
CW Electronics
Denver
Connecticut
Hatry Electronics
Hartford
Delaware
Delaware Amateur Supply New Castle
Amateur \& Advance Communications
Wilmington

Florida

Mike's Electronics
Fort Lauderdale
Hialeah Communications Hialeah
Amateur Electronic Supply
Orlando
Idaho
Custom Electronics
Boise
Ross Distributing Co.
Preston
Illinois
Organs \& Electronics
Lockport
Indiana
Lakeland Electronic Supply
Angola
The Ham Shack
Evansville
Electrocom Industries
South Bend
lowa
Hi, Inc.
Council Bluffs

Massachusetts

Tufts Radio Electronics Medford
Michigan
Omar Electronics
Durand
Radio Parts, Inc.
Grand Rapids
Missouri
Henry Radio
Butler
Ham Radio Center, Inc.
St. Louls
Mid-Com Electronics
St. Louis
Nebraska
Omaha Amateur Center Omaha

Nevada

Amateur Electronic Supply
Las Vegas

New Jersey
Radios Unlimited
Somerset
New Mexico
Pecos Valley
Amateur Radio
Roswell
New York
Grand Central Radio
New York
Ham Radio World
Oriskany

North Carolina

Bino Communications
Greensboro
Ohio
Ken-Mar Industries
North Canton
Universal Amateur Radio
Reynoldsburg
Amateur Electronic Supply
Wickliffe

Oklahoma

Radio Incorporated
Tulsa
Oregon
Eugene Radio Supply
Eugene
Pennsylvania
Supelco, Inc.
Bellefonte
South Hills Electronics
Pittsburgh
Carr Electronics
Telford
Ham Buerger, Inc.
Willow Grove
South Carolina G.I.S.M.O.

Rock Hill
South Dakota
Burghardt Amateur Center
Watertown

Tennessee

ARSON
Madison
Germantown Amateur Supply
Memphis
J-Tron
Springfield

Texas

Texas Towers
Plano
Virginia
Tuned Circuit
Harrisonburg
Radio Communications Co.
Roanoke
Washington
Amateur Radio Supply
Seattle
C-COMM
Seattle
Wisconsin
Amateur Electronic Supply Milwaukee
Canada
Ham Traders
Downsview, Ontario
R \& S Electronics Ltd. Dartmouth, N. S.

- For dipoles, yagis, inverted vees \& doublets
- Replaces center insulator
- Puts power in antenna
- Broadbanded $3-40 \mathrm{MHz}$
- Small, lightweight and weatherproof
- 1:1 impedance ratio
- For full legal power and more
- Helps eliminate TVI
- With SO-239 connector
$\$ 10.95$

HI-G ANTENNA

 CENTER INBULATOR

Small, rugged, lightweight, weatherproof
Replaces center insulator
Handles full legal power and more
$\$ 5.95$ With So 239 connector
HI-G ANTENNA END INSULATORS

Rugged, lightweight, injection molded of top quality material, with high dielectric qualities, and excellent weatherability. End insulators are constructed in a spiral unending fashion to permit winding of loading coils or partial winding for tuned traps.

May be used for

- Guy wire strain insulators
- End or center insulators for antennas - Construction of antenna loading coils or multiband traps

Dipole shorteners - only, same as indicated in SD model

$\begin{array}{ccc}\text { S. } 40 & 40 & \$ 10.95 / \mathrm{pr}\end{array}$
All antennas are complete with HI-Q Balun or HI-Q Antenna Center Insulator, No. 14 antenna wire, ceramic insulators,
100 ' nyion antenna support rope (SD models only 50), rated 100 nylon antenna support rope (SD models only 50), rated for full legal power. Antennas may be used as an inverted V, and may also be used by MARS or SWLs.

[^9]
portable shortwave converter

A companion for a receiver described earlier in ham radio

To judge by the amount of mail pouring in, it appears that the electronic simplicity of my portable monoband receiver project ${ }^{1}$ has put it well within the reach of many homebrewers. A frequent inquiry, however, has been how to expand receiver coverage and tune in more bands.

While I've long maintained that a monoband set can be built with considerably fewer spurious responses than multiband affairs, I have to admit that some operators may live with in-band birdies better than I do. With this objective in mind, I conceived a converter designed to go together with the family of receivers of reference 1.

general considerations

The basic principles that determined the receiver design still hold true: the converter must be portable, have a small power drain, and be fully compatible with the GP-58 and 59 receivers described earlier. ${ }^{1}$ (The GP-60 is a later version currently operational that was not included in the article at the time the original work was written.)

Converter front view. The power switch is a two-pole, three-position affair that switches the converter off and leaves the receiver operating as an independent unit. The converter weighs about 12 ounces 1340 grams); current drain is 10 mA at 12 Vdc .

To make the project easy and compatible with the set, the MHz reading normally occurs on the receiver bandswitch, but when the converter is plugged in, the MHz reading is transferred from the receiver to the converter bandswitch. This keeps the design straightforward and minimizes the number of cables interconnecting the receiver to the converter.

design

Frankly, these sets were not designed with converter operation in mind, so I approached the downconverting scheme with some qualms, even though it proved out better than I'd initially expected. Since
the converter can cover (without bandswitching the front end) the range $7-22 \mathrm{MHz}$, the conversion is made to the receiver's $2.0-3.0 \mathrm{MHz}$ tuning range. Taking as an example the reception of the $11-\mathrm{MHz}$ band (25-meter shortwave broadcast), the overall conversion scheme appears in fig. 1.

For the sake of experimentation, three different converters were built: the GP-63 is the one described here. It uses HC-25/ U crystals and a miniature bandswitch to allow for more compact design. The circuit is not critical if the layout shown in the photos is followed.

construction

* The photos show the GP-63 converter and give details for its duplication. Its schematic is given in fig. 2. Cabinet dimensions are $3.5 \times 1 \times 3.5$ inches (90 $\times 25 \times 90 \mathrm{~mm})$. Cabinet material is 16 -gauge stainless steel, formed on a 16 -ton arbor press. The main chassis and back panel are $1 / 8$-inch ($3.2-\mathrm{mm}$) aluminum. The bandswitch shield is $1 / 32$-inch $(1-\mathrm{mm})$ aluminum. The printed circuit board is mounted on $1 / 4$ inch ($6.4-\mathrm{mm}$) pillars fastened with 4-40 (M3) Allen screws. To avoid rf interaction, the PC board is double sided. The bandswitch is a miniature unit by Centralab with ceramic wafers. All the parts are specified on the schematic and are easily available in the U.S.

power supply

A two-pole, three-position switch on the converter panel controls the $12-\mathrm{Vdc}$ external power supply, allowing for an OFF position for both the receiver and

[^10]

Converter top view. The input toroid is on the printed circuit at upper right, followed by the rf transistor, mixer toroid, and mixer transistor to the left. Oscillator transistor is at the lower left-hand corner of the printed circuit. The central aluminum strip acts as converter chassis and shield. Below it at the right are the trimmers, followed by the two-wafer bandswitch, with shielding between them. The adjustment capacitors are at lower left, as are the power input/output jacks.
the converter, a converter (CV) position when both receiver and converter operate, and a receiver (RX) position, when the converter is switched off and the receiver is used independently. Power consumption is about 10 mA at 12 Vdc , and it is drawn from the same supply of the receiver. To make the converter independent, a 9 -volt battery might be used instead, but at the cost of a size increase for the converter cabinet.

conversion to other frequencies

By simple crystal replacement and proper frontend tuning, the converter can be adapted to receive the $14-$ and $21-\mathrm{MHz}$ Amateur bands 13.5 MHz being received directly by the receiver without requiring external conversion).

An alternative option, perhaps of more interest to Radio Amateurs, could be to increase slightly the receiver coverage (as already mentioned in reference 1) and tune $3-8 \mathrm{MHz}$. By so doing, both the 80 - and $40-$ meter bands would be covered by the receiver and, by winding fewer turns on the converter coils, would tune 14,21 , and 28 MHz .

Worthy of note is the converter output that is not tuned, its frequency being solely controlled by the input and crystal oscillator; this converter can therefore be easily used at frequencies different from those described here.

fig. 1. Conversion scheme of the GP-63/GP-60 converter/receiver combination. Set tunes the $2.0-3.0 \mathrm{MHz}$ band and receives on 11.71 MHz .

fig. 2. Converter schematic and component identification.

acknowledgment

As always, I'm deeply indebted to Maiso, PY2GP, for his continued counsel and support.

reference

1. J. Perolo, PY2PE1C, "Portable Monoband Shortwave Receiver with Electronic Digital Frequency Readout," ham radio, January, 1980, page 42.
ham radio

IETITSEI
 the first name in Counters ! 9 DIGITS 600 MHz \$129 $\frac{95}{w}$ $\frac{\text { SPECIFICATIONS: }}{\text { Range } \quad 20 \mathrm{~Hz} \text { to } 600 \mathrm{MHz}}$

The CT-90 is the most versatile, feature packed counter available for less than $\$ 300.00$: Advanced design features include, three selectable gate times, nine digits, gate indicator and a unique display hold function which holds the displayed count after the input signal is removed Also, a 10 mHz TC XO time base is used which enables easy zero beat calibration checks against WWV. Optionally, an internal nicad battery pack, external time base input and Micropower high stability crystal oven time base are available. The CT-90, performance you can count on'

Sensitivity. Less than 10 MV to 150 MHz Less than 50 MV to 500 MHz
Resolution 0.1 Hz (10 MHz range) 1.0 Hz (60 MHz range) 10.0 Hz (600 MHz range)

Display: $\quad 9$ digits $0.4^{\prime \prime}$ LED
Time base. Standard $10.000 \mathrm{mHz}, 1.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$. Optional Micro-power oven $0.1 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$ $8-15$ VAC (a) 250 ma

7 DIGITS 525 MHz \$9995

SPECIEICATIONS:
Range: $\quad 20^{\circ} \mathrm{Hz}$ to 525 MHz Sensitivity: Less than 50 MV to 150 MHz Less than 150 MV to 500 MHz
Resolution $\quad 1.0 \mathrm{~Hz}$ (5 MHz range) 10.0 Hz (50 MHz range) 100.0 Hz (500 MHz range) 7 digits $0.4^{\prime \prime}$ LED
Time base $\quad 1.0 \mathrm{ppm}$ TCXO $20-40^{\circ} \mathrm{C}$
Power. $\quad 12 \mathrm{VAC}$ © 250 ma

The CT-70 breaks the price barrier on lab quality frequency counters Deluxe features such as three frequency ranges - each with pre amplification, dual selectable gate times, and gate activity indication make measurements a snap. The wide frequency range enables you to accurately measure signals from audio thru UHF with 1.0 ppm accuracy - that's $.0001 \%$! The CT-70 is the answer to all your measurement needs, in the field, lab or ham shack.

PRICES:
CT-70 wired 1 year warranty $\$ 99.95$ CT- $70 \mathrm{Kit}, 90$ day parts warranty
$\mathrm{AC}-1 \mathrm{AC}$ adapter 3.95 BP-1 Nicad pack + AC adapter/charger
12.95

7 DIGITS 500 MHz \$79 95

 WIRED
PRICES:

MINL-100 wired, 1 year warranty
MINI-100 Kit, 90 day part warranty AC- Z Ac adapter for MINI100
BP-Z Nicad pack and AC adapter/charger

Here's a handy, general purpose counter that provides most counter functions at an unbelievable price. The MINI-100 doesn't have the full frequency range or input impedance qualities found in higher price units, but for basic RF signal measurements, it can't be beat' Accurate measurements can be made from 1 MHz all the way up to 500 MHz with excellent sensitivity throughout the range, and the two gate times let you select the resolution desired. Add the nicad pack option and the MINI- 100 makes an ideal addition to your tool box for "in-the field" frequency checks and repairs

SPECIFICATIONS: Range $\quad 1 \mathrm{MHz}$ to 500 MHz Sensitivity: Less than 25 MV Resolution 100 Hz (slow gate) 1.0 KHz (fast gate) 7 digits, $0.4^{\prime \prime}$ LED Power: $\quad 5$ VDC © $\AA 200 \mathrm{ma}$

8 DIGITS 600 MHz \$159 ${ }_{\text {WIRED }}$

SPECIFICATIONS:

Range: $\quad 20 \mathrm{~Hz}$ to 600 MHz Sensitivity: Less than 25 mv to 150 MHz Less than 150 mv to $600 \mathrm{MHz}_{2}$ 1.0 Hz (60 MHz range) $10.0 \mathrm{~Hz}(600 \mathrm{MHz}$ range) 8 digits $0.4^{\prime \prime}$ LED $2.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$ 110 VAC or 12 VDC

The CT-50 is a versatile lab bench counter that will measure up to 600 MHz with 8 digit precision. And, one of its best features is the Receive Frequency Adapter, which turns the CT-50 into a digital readout for any receiver. The adapter is easily programmed for any receiver and a simple connection to the receiver's VFO is all that is required for use. Adding the receiver adapter in no way limits the operation of the CT-50, the adapter can be conveniently switched on or off. The CT-50, a counter that can work double duty!

PRICES:
CT-50 wired 1 year warranty $\$ 159.95$ CT- $50 \mathrm{Kit}, 90$ day parts warranty
119.95

RA-1, receiver adapter kit RA. 1 wired and pro programmed (send copy of receiver schematic)

The DM-700 offers professional quality performance at a hobbyist price. Features include, 26 different ranges and 5 functions, all arranged in a convenient, easy to use format. Measurements are displayed on a large $31 / 2$ digit, $1 / 2$ inch LED readout with automatic decimal placement, automatic polarity, overrange indication and overload protection up to 1250 volts on all ranges, making it virtually goof-proof The DM-700 looks great, a handsome, jet black, rugged ABS case with convenient retractable tilt bail makes it an ideal addition to any shop.

SPECIFICATIONS:

 DC/AC
current $\quad 0.1 \mathrm{uA}$ to 2.0 Amps 5 ranges Resistance 0.1 ohms to 20 Megohms 6 ranges Input
impedance 10 Megohms. DC/AC volts $\begin{array}{ll}\text { impedance. } \\ \text { Accuracy. } & 10.1 \% \text { basic DC volts }\end{array}$ Power:

COUNTER PREAMP

Telescopic whip antenna - BNC plug.
or measuring extremely weak signals from 10 to 1,000 MH z. Small sise, powered by plug transformer-included.

- Flat 25 db gain
- BNC Connectors
- Great for sniffing RF with pick-up loop $\$ 34.95$ Kit $\$ 44.95$ Wired

High impedance probe, light loading.
Low pass probe, for audio measurements
Direct probe, general purpose usage
Tilt bail, for CT 70,90 . MINI-100
Color burst calibration, unit calibrates counter
against color TV signal.
4.95

Itimsay alabirctias inc.
2575 BAIRD RD., PENFIELD, NY 14526 CALL. 716-586-3950

frequency modulator

 for a 2-meter synthesizer
Compatible modulation scheme for the CMOS circuit published earlier in ham radio

After my 2-meter synthesizer article appeared in ham radio ${ }^{1}$ I received two letters indicating that my synthesizer, and probably others, cannot be used with certain radios. This is because these sets use a varactor diode in series with the crystal to produce direct $f m$, and this method will not work with an external oscillator. Many potential builders might be faced with this problem, so I decided to devise a compatible modulation scheme.

predesign

Methods of directly modulating the synthesizer were first considered then rejected, since the circuit boards would have to be modified. Also, I didn't think this approach would work too well anyway.

Methods of modulating the synthesizer output were then studied. I breadboarded two quite different cir cuits. One of the two gave the desired performance.

The modulator chosen uses a varactor-tuned tank circuit. Passing a CW signal through such a tank circuit and varying the bias on the varactor results in variable phase shift, or phase modulation. This phase-modulated signal is then converted to fm.

Theory books show that phase and frequency modulation are the same, except that the deviation is independent of modulating frequency with fm and increases linearly with frequency in the case of pm if the modulating amplitude is kept constant. Changing pm to fm requires only that the modulating audio be passed through a rolloff filter and is easily achieved with a simple RC filter. The only other design problem is to rid the resulting fmsignal of a-m components produced by the modulation process (see below).

modulator design

Fig. 1 is the schematic of the modulator, including an optional speech amplifier.*
*PC boards and many components are available from RADIOKIT, Box 416 H , Greenville, N.H. 03048 . Circuit boards for the synthesizer are also available.

By Tom Cornell, K9LHA, 3631 North 900E, Greentown, Indiana 46936

The input signal from the synthesizer is attenuated in the resistor divider network (R1, R2, R3) to prevent overdriving the varactor diode, CR1. Audio voltage and approximately 4 volts of bias are fed to the varactor through R7. The modulated output of the tank, L1 and CR1, is fed to three stages of a 7400 quad NAND gate, U1, to eliminate a-m produced by variable attenuation in the tank circuit. The first two stages of the 7400 (U1D, U1C) are biased to increase sensitivity, and the third stage (U1B) provides limiting as well as sufficient drive for the 2 -meter transmitter. (You'll note that the same output circuit is used in the synthesizer. ${ }^{1 /}$

capacitor

C8 across bias resistor R5 rolls off the gain of the 7400 second stage to prevent oscillation during receive mode when drive is removed. This problem did not occur in the breadboard version (which, incidentally, used all four gates of the 7400), and only showed its ugly head after I had made the PC-board artwork and built a board - another proof of Murphy's Lawl

To make sure the problem was resolved, I installed a socket in the modified circuit board and plugged in all the 7400 s I had on hand. After adding capacitor C8, things calmed down with no drive except when a 74LSOO was used. Steer clear of them in this application!

Dual op-amp U2 comprises a speech amplifier, deviation limiter (clipper), and an output amplifier. Ac gain in both stages is set by heavy negative feedback. The value of R106 can be adjusted to suit a wide variety of microphones, and pot R110 sets the deviation level.
When the speech amplifier is used, R8 and R9 are omitted; these resistors provide bias for the varactor if the speech amplifier is not used. In this case, you may also eliminate the speech amplifier portion of the circuit board if this will help in packaging the modulator. Both 5 - and 8 -volt supplies may be swiped from the respective regulators in the synthesizer.

alignment

Alignment of the modulator requires only two adjustments. With the modulator connected to the output of the synthesizer, which is set to the center of its frequency range, adjust to produce peak output from the tank circuit. The diode detector probe used in tuning the synthesizer may be of use here. Connect it to one of the outputs of the 7400, and adjust L 1 for peak dc voltage out of the probe. If the speech amplifier is used, set R110 for the desired deviation. At this point, you should be ready to use both the synthesizer and modulator with your rig; however, do observe the rig interface information contained in the synthesizer article. ${ }^{1}$ Shielding the modulator would be good practice and may, in fact, be necessary.

fig. 1. Schematic diagram of the modulator for the synthesizer (A) and an optional speech pre-amplifier, deviation limiter, and output amplifier (B).

> Kitty says We Will Not Be Undersold On Hand-Held Radios!

The outstanding Yaesu FT. 707, FT-902 DM, FT107 M or the FT-101ZD

FT 720 RVH, 25 watts, 2 meter transceiver. FT- 720 RU, UHF transceiver. FT 480, 2 meter, all mode, 30 watts.
Special on SWAN Field Strength Meters - \$17.50
APRIL FEATURES COLLINS KWM 380 and accessories for all major lines ASTRO $103 \cdot$ BIRD WATTMETERS MIRAGE 2M amplifiers• MURCH UT 2000B It's Barry's for the Drake TR/DR-7 and R-7 CW Ops - we've got NYE keys, Vibroplex Bencher paddles and electronic keyers ICOM 720A All-Band HF

APRIL IS ANTENNA MONTH

Slinky Dipoles, HyGain Antennas 2 m beams \& mobile, 18AVT/WB and Rotators
BARRY'S HAS HAND-HELDS NEW Yaesu FT-404 R (UHF)

Yaesu FT-207R
Icom IC-2AT
Santec HT-1200
BARRY'S HAS TUBES.
3-500Z, 572B, 6146's and more
BARRY now carries the ALPHA 76CA
with three 8874 tubes, 2,000W PEP
and hypersil ${ }^{\Phi}$ transformer
Trionyx $\mathbf{0 - 6 0 0} \mathrm{MHz}$ counters $\mathbf{-} \mathbf{\$ 1 5 9 . 9 5}$

- Complete selection of radio books including 1981 Handbook and Repeater Directory
Our lines include:

AEA	CUSHCRAFT	KLM	TEMPO
ALLIANCE	DENTRON	KANTRONICS	TRI-EX
ASTRON	DRAKE	MFJ	VHF ENGINEERING
AVANTI	ETO	MIRAGE	WACOM
B\&W	EIMAC	MURCH	YAESU
BIRD	ENCOMM	ROBOT	ANDMORE
COLINS	HUSTLER	SHURE	
COMMUNICATIONS	HY.GAIN	STANDARD	
SPECIALISTS	ICOM	SWAN/CUBIC	

BUSINESSMEN: Ask about BARRY'S line of business-band equipment. We've got it!

Amateur Radio License Classes:
Wednesday \& Thursday: 7-9 pm Saturday 10 am-Noon

- AQUISE HABLA
 The Export Experts Invite Overseas orders \longrightarrow VISA - We Ship Woridwide
 BARRY ELECTRONICS
 512 BROADWAY, NEW YORK, N.Y. 10012 TELEPHONE (212) 925-7000

TELEX 12-7670

Foil side of PC board.

Component side of PC board.

acknowledgment

I thank Budd, K2PMA, and Don, WA3AXS, for their helpful construction suggestions and information on interface problems with certain rigs, and Jim Fisk, W1HR (regrettably now posthumously) for his encouragement on this project. I'll be glad to answer any question if you will enclose a self-addressed, stamped envelope.

reference

[^11]ham radio

HAM ANTENNA ACCESSORIES
at your dealer

LONDON:
VICTORIA:
CONCEPCION:
BUENOS AIRES:
COL. ANAHUAC
HELSINKI:
AUSTRIA
FRANCE
GERMANY

AMCOMM 018041166
Scalar 7259677
Telecom Trans Chile 25471
Multi-Radio 773-1266
Radiac 2-50-32-40
Erikoismediat (90) 611258
Renox Telex: 76021
SFL 1901533940
Williges (0421) 514021

HAMS - call for our free catalog PC-80
DEALERS - join over 400 dealers world-wide. Call us today for no-risk deal.

HAMFEST MANAGERS -

UNADILLA cooperates!
Call us.
US - TOLL-FREE 1-800-448-1666
NY/Hawaii/Alaska/Canada -
COLLECT 1-315-437-3953
TWX - 710-541-0493
Ask for Bonnie, or Emily.
the Old reliable W2VS Traps
For over 20 years, the choice of Hams, Armed Forces and Commercial Communications - world-wide.

"HELICAN-10"
10-Meter
Indoor
Helix Antenna

- Lo-Pass Filter 2000W - Quad Parts
- Baluns / Traps
- Insulators
- Wire \& Cable
- Connectors
- Antenna Kits

UNADILLA / REYCO Division Microwave Filter Co., Inc., E. Syracuse, NY 13057

MINIATURE AUTOMATIC C.W. STATION IDENTIFIER

MODEL 97813, ONLY $\$ 74.95$ -
COMPLIES WITH NEW FCC RULES, PARTS 89, 91, 93, 95

- MULTI-MODE OPERATION: MANUAL, SEMI-AUTO AND AUTO.
MANUAL MODE - A pushbutton switch triggers the identifier which keys the transmitter for the duration of the iD. cycle.
SEMI-AUTO MODE - The PTT line activates the ID'er if the repeat interval time has elapsed and keeps the transmitter keyed throughout the duration of the 10 . cycle
AUTO MODE - The identifier will key the transmitter and ID every time the repeat interval time has elapsed.
- CONNECTS DIRECTLY TO MICROPHONE AND PTT INPUTS OF MOST TRANSMITTERS. MINIATURE SIZE MAKES IT FEASIBLE TO MOUNT INSIDE THE TRANSMITTER.
- PROGRAMMABLE CODE SPEED. TONE, AND PRPEAT TIME
- adjustable code audio level.
- PREPRROQRAMMED MEMORY ELEMENTS 254 OR (510 BIT) (OPTIONAL)
- SIZE- 1×4 INCHES
- includes switches. wiring and instruction manual.
- ONE YEAR WARRANTY - MADE IN U.S.A.
- Include $\$ 3 \mathrm{shpg} / \mathrm{hdig}$., $\$ 5$ foreign. CA. res. add sales tax. allow four weeks delivery.

Securitron

P.O. Box 32145 • San Jose, Ca. 95132 Phone (408) 294-8383

New from $\%$,
BLACKCAT
Antenna Sw./Wattmeter/SWR Meter 5169.50 ppd.
BlackCat JB-4000SW - every shack needs it, every ham can afford it. 4-position Antenna Switch. Heavy duty coax switch rated at 2 kW PEP. Three positions for antennas (AUX may be used for dummy load). Fourth position parallels positions 1 and 2 for receive use only.
Dual-reading RF Power Meter. Switch to RMS or Peak. Three ranges: 20, 200, and 2000 watts, full scale.
Built-in SWR Meter. Shows SWR from $1: 1$ to $7: 1$. Two-position "Set/SWR" switch plus RF level control. Calibrated for 80-10 meters, 50 ohm non-inductive load. JB-1000 KW Dummy Load

50 ohm oil-cooled, temperature-stable, resistive load handles up to 1 kW with low SWR. Less oil. $\$ 29.95$ ppd.

Dept. HR-4

And more! Those of us who still enjoy occasionally operating AM appreciate the Modulation-Percent meter scale and earphone monitor jack. And the rugged metal cabinet with black vinyl-clad steel cover and black anodized aluminum panel has white nomenclature for easy reading. Size: $91 / 2^{\prime \prime} \mathrm{W}$

$\times 6^{\prime \prime} H \times 51 / 2^{\prime \prime}$ D.

WAWASEE ELECTROX Sox Syracuse. IN 4656 Dept. 219/457-3191 (UPS shipping prepa.) Phone: Enclosed is \$ Indiana res. add 4\% sales tax.) (No CODs. Ind Model(s) Mastercard Please send Models Mastercard Please sen: \square Visa Card No
Charge It:
Exp Date.

transmission-line circuit design

 for 50 MHz and above
Using distributed resonant circuits for vhf/uhf transmission lines Part 5: design example for a 2-meter amplifier

This is the fifth and final part of an article on the design of vhf/uhf transmission lines using distributed resonant circuits. A practical design example is presented for a 2-meter amplifier based on general equations and design relationships ${ }^{1}$ and basic design data for twelve common line configurations.2,3,4

design example

A 2-meter amplifier using 4CX250R tubes is to be constructed, and resonant-circuit transmission-line designs for the plate and grid circuits are required. The amplifier grid and plate circuits are to be contained in a space 17 inches (43.18 cm) wide, 6 inches (15.24 cm) deep, and $8-3 / 4$ inches (22.23 cm) high (standard rack panel height). A 3 -inch (7.62 cm) high chassis is available that is 13 inches (33.02 cm) deep and the correct width. The plate circuit enclosure extends 5 inches (12.7 cm) above the chassis. The
tubes are mounted at the left end of the chassis, the grid circuit below the chassis, and the plate circuit

fig. 22. Plate (A) and grid circuit (B) cross-section for 4CX250R resonant circuits discussed in the design example.
above the chassis. Cross sections for grid and plate circuits are shown in fig. 22.

plate-line design

The tubes can be mounted horizontally or vertically. Horizontal mounting (fig. 23) permits capacitive coupling of tubes to line, which removes the dc plate voltage from the line. It's necessary to determine if the capacitance that can be obtained by the tube and plate line is adequate.

SSS $0.010 \mathrm{iN}(0.3 \mathrm{~mm}$) TEFLON
WIIIID 4 CX250R TUSE
fig. 23. Capacitor formed by tube fin and plate line tube.
table 54. dielectric constant of commonly used insulation materials.

The width of the 4CX250R plate dissipation fin is 0.71 inch (1.80 cm), which provides a maximum capacitor area of 1.1431 square inches (7.38 square $\mathrm{cm})$.

If 0.010 inch (0.0254 cm) Teflon insulation, which provides a good voltage insulation capability (600 volts/mill, is used between line and amplifier tube, use eq. $13{ }^{1}$ to calculate the capacitance. Table 54 lists the dielectric constant values in descending order of ϵ for most commonly used insulation materials. From this table Teflon is 2.4. The capacitance obtained from using eq. 13 is:
$C_{p F}=(0.225)(2.4)\left[(1) \frac{1.1431}{0.010}\right]=61.73 \mathrm{pF}$
At 144 MHz the equivalent reactance is 15.8 ohms. Considering the power levels involved for a pair of 4CX250R tubes this value is unacceptably high, because the rf current would probably exceed the TefIon dielectric dissipation factor. Consequently, a hard connection to the tubes is required for the plate circuit. Reactance values of 2 ohms or less are acceptable for power levels in the 2-kW PEP range. Also, for this frequency, there's no advantage in mounting the tubes horizontally; thus the simpler vertical mounting directly onto the chassis is to be used.
The minimum center-to-center tube spacing, using the Eimac SK-610 socket, is 2.8 inches (7.11 cm). If a reasonable amount of clearance from line to side wall is to be maintained, a value of 3 inches (7.62 cm) center-to-center is a good choice. From the original 17 -inch ($43.18-\mathrm{cm}$) width, 3 inches (7.62 cm) is subtracted, leaving a maximum of 14 inches (35.56 cm) to accommodate the plate line. If allowances are made for connection to the tubes and insulating the line from the chassis, a net maximum length of 13 inches (33.02 cm) remains.

The characteristics for a push-pull tube arrangement are shown in fig. 24. C_{o} is the output capacitance of each tube. The tube capacitances are in series across the plate line. The value of C_{o} for the 4CX250R is 5 pF maximum. Therefore, the capacitance shunting the line is 2.5 pF .

fig. 24. Push-pull configuration for paraliel lines in air.

The next step is to calculate the value of Z_{0} that results from the available length and the stray and tuning capacitance. The latter is assumed to be 7.5 pF. Using eqs. 1 through 6 or the HP-67/97 program in table $1,1 Z_{0}$ is calculated as

$$
\begin{equation*}
C_{\text {total }}=\frac{C_{\text {out }}}{2}+C_{\text {tune }} \tag{59}
\end{equation*}
$$

for these conditions:

$$
\begin{aligned}
F & =144 \mathrm{MHz} \\
\text { length } & =13.0 \mathrm{in} .(33.02 \mathrm{~cm}) \\
C_{\text {total }} & =10 \mathrm{pF} \\
C_{\text {tune }} & =7.5 \mathrm{pF} \\
C_{\text {out }} & =5.0 \mathrm{pF}
\end{aligned}
$$

The following examples use the tables and figures provided. I assume that the programmable calculator will be used.

From eq. 2 or fig. 4, ${ }^{1} X_{c}$ for 10 pF is 110.5 ohms. Using fig. 5,1 β is determined to be about 4.39 degrees/in. (6 degrees/cm) for 144 MHz . Therefore, $\beta \ell=4.39 \times 13=57.2$ degrees and the $\tan \beta \ell=1.55$ from fig. 3. ${ }^{1}$ Rearranging eq. 1 for Z_{θ} yields

$$
\begin{equation*}
Z_{0}=\frac{X_{C}}{\tan \beta \ell}=\frac{112}{1.55}=72.25 \mathrm{ohms} \tag{60}
\end{equation*}
$$

This is a low value of Z_{0} for parallel lines, indicating that the line length should be shorter to yield values of Z_{0} between 150 and 400 ohms. If 150 ohms is chosen and X_{C} remains the same (112 ohms), tan $\beta \ell=\frac{112}{150}=0.75$ and $\beta \ell$ is 36.87 electrical degrees long. Dividing by $\beta=4.39$ degrees $/$ inch gives $\ell=8.4$ inches $(21.33 \mathrm{~cm})$. This says the 17 -inch ($43.18-\mathrm{cm}$) wide enclosure is very generous, and 13 inches (33.02 cm) would be adequate.

The physical dimensions of the line can be determined from fig. 17. ${ }^{1}$ From the geometry of fig. 23 and placing the line in the center of the cross section, $h=2.5$ inches (6.4 cm) over the chassis ground plane. If copper water pipe with an outside diameter of 0.625 inch (1.59 cm) is used for the lines, $\frac{h}{d}=\frac{2.5}{0.625}=4$. Entering the graph of fig. 17 for a value of $\frac{h}{d}=4$ and moving up to the $Z_{0}=150 \cdot \mathrm{ohm}$ line yields a $\frac{D}{h}$ value of 0.6 . Therefore, D, the center-to-center spacing of the lines, is 0.6×2.5 or 1.5 inches (3.8 cm), an acceptable value. If other spacing is desired, other line diameters can be tried.

The disc tuning capacitor is calculated using fig. 6. ${ }^{1}$ A variable capacitor of sufficient insulation can also be used; the choice is left to the reader.

Often the line is made intentionally longer and a

fig. 25. Plate bypass capacitor detail.
shorting bar used to set the final operating point. That choice is not necessary if the data provided here are used.

In fig. 25, the dc feed point is indicated. It is impossible to predict the exact if balance point because of stray reactances. So, it is good design practice to insert a small if choke at this point. Four turns of no. 12 wire, $3 / 8$ inch (0.95 cm) in diameter and 0.5 inch $(1.27 \mathrm{~cm})$ long, are adequate. This permits the rf balance point to center itself at some point in the rf choke. The dimensions of this rf choke are not critical, but it should have a reasonably high Q. The highest rf choke Q is generally obtained when the wires are spaced a wire diameter apart - the pitch is equal to twice the wire diameter. Callendar's equation (reference 5) is readily used with this pitch to estimate coil Q :

$$
\begin{equation*}
Q=\frac{\sqrt{F}}{\frac{2.71}{a}+\frac{2.13}{\ell}} \tag{61}
\end{equation*}
$$

where $F=$ frequency (Hertz)
$a=$ choke radius to center of turn (inches)
$\ell=$ choke length to center of first-to-last turn (inches)

This equation is accurate to within a few per cent and, for close-wound rf chokes, is high by a factor of almost two.

Reference 6 contains a comprehensive discussion of inductances, Q, and the calculation of single-layer solenoid choke parameters.

A further important consideration is the plate circuit rf bypass capacitor and its placement providing balanced, low-inductance rf current return paths to the tube cathodes. One of the better choices for a capacitor is a parallel plate type that uses the chassis as one of the capacitor plates and is centered under the line between the tubes and the line-support mechanism at the shorted end. The plate is secured to the chassis with insulating washers and nylon screws. Fig. 25 shows a typical installation, with details for the high-voltage feedthrough insulation hold-downs. The capacitor reactance should be less than 1.5 ohms. At 144 MHz , a 5 -inch (12.7 cm) by 7 -inch (17.78 cm) plate, using 0.010 inch (0.25 mm) Teflon insulation, provides an 1890 pF capacitor with a reactance of 0.58 ohm . Note that the capacitor is placed so that the high plate of currents find equal and balanced paths to the tube cathode. Using this technique, the high voltage feed point is cold to rf below the chassis. Make sure that the small balance inductor is soldered to a centerline point on top of the capacitor. Balanced rf currents produce stable amplification.

If a fixed rf bypass capacitor of appropriate quality is used, the same current balance considerations apply. The balancing rf choke is also required. This completes the plate line design. Refinements to final values can be readily made as desired.

grid-line design

The grid-line design proceeds in a manner similar to that of the plate-line design. However, the critical difference for most tubes is that input capacitance is quite high. The 4CX250R input capacity is 17.2 pF maximum for grounded cathode configurations. For the design configuration considered here, fig. 24 applies. The net capacitance across the lines is 8.6 pF . Note that the push-pull configuration reduces the tube input capacitance by two over single-ended designs, a possibly important tradeoff for higher frequencies. If a dual 20 pF tuning capacitor is available, and it is assumed to be set at the $15-\mathrm{pF}$ per section point, the net tuning capacitor is 7.5 pF in parallel
with the tube capacitance of 8.6 pF for a total of 16.1 pF. At 144 MHz , from fig. 4, ${ }^{1}$ this is about 50 ohms. Going back to eq. 1^{1} and rearranging, $\tan \beta \ell=\frac{X_{c}}{Z_{0}}$. And assuming a Z_{0} of 150 ohms, $\tan \beta_{\ell}=\frac{50}{150}$ $=0.33$. Referring to fig. 3, the $\beta \ell$ length is 21.25 degrees, or 4.84 inches (12.29 cm), if β is 4.39 degrees/inch.

From the geometry described in fig. 22, $h=1.5$ inches (3.81 cm), requiring the line to be centered in the chassis. If no. 10 wire (0.102 inch, 0.26 cm) is used for the line, $\frac{h}{d}=\frac{1.5}{0.102}=14.71$. Referring to fig. 17 and entering at a value of 14.71 for h / d provides a value of 0.13 for D / h. Solving for D, the center-tocenter distance of the grid lines gives $D=0.13 h=0.13 \times 1.5=0.2$ inch $(0.51 \mathrm{~cm})$. This is not a practical value, because the outside diameter spacing of the conductor leaves only 0.098 inch 10.25 cm) separation. If a Z_{0} of 350 ohms is chosen, the length will change but the D will increase, from fig. 17 , to $1.5 \times 0.7=1.1$ inches (2.67 cm), an acceptable value. The new line length is now calculated for $Z_{0}=350$ ohms, $\tan \beta \ell=\frac{50}{350}=0.143$. Referring to fig. 3, this is about 10 degrees. Dividing by 4.39 (β degrees/inch) yields 2.28 inches (5.8 cm) line length.

It is clear that this design is now realizable. But electrical line lengths of 12 degrees or less are undesirable; the minimum value should be about 20 degrees. Remember the tuning capacitor we chose earlier and its setting of 7.5 pF net capacitance across the line? If that is reduced to 5 pF , the line length can be extended to an acceptable value.

As in the plate line, a balancing rf choke is used at the center point of the bias feed for the grids. Five turns of no. 16 wire, 0.25 inch (0.65 cm) in diameter and 0.5 inch (1.27 cm) long, are adequate. The same rules stated earlier for balancing rf currents apply here. The grid rf bypass capacitor is grounded on the centerline of the tubes and grid line. A parallel plate is not recommended for the grid because, in this case, it would interfere with the plate circuit bypass capacitor.

special consideration

If the $4 \mathrm{C} \times 250 \mathrm{R}$ tubes described here for 144 MHz use were considered for 432 MHz single-ended use, the input capacitance of 17.2 pF maximum places the first $\frac{\lambda}{4}$ point inside the tube header, even if the line Z_{0} is chosen to be 10 ohms - a relatively impractical number. Because of the required line diameter and close spacing to the ground plane a coaxial tank is assumed. A simple solution is to use multiple $\frac{\lambda}{4}$ line

fig. 26. Line feed configuration for multiple $\lambda / 4$ segments.
lengths as shown in fig. 26.

comments

The example presented is simple, but it does show the required iterative design process you can implement to achieve a specific solution. Much has been left unsaid. The shortened line at uhf and above due to device capacitance deserves an equally lengthy treatment, as does the microstrip design area, which was not discussed here at all.

acknowledgments

Comments by S. Harrison, WB6PKA, Dr. R.M. Searing, and T.C. McDermott, III, N5EG, are gratefully acknowledged. The most valuable contributions were provided by B.L. Reardon, to whom the author is singularly indebted.

references

1. H.M. Meyer, Jr., W6GGV, "Transmission-line circuit design," part 1. ham radio, November, 1980, page 38.
2. Ibid., part 2, January, 1981, page 62.
3. Ibid., part 3. February, 1981, page 56.
4. Ibid., part 4, March, 1981, page 64.
5. M. Callendar, "Q of Solenoid Coils," Wireless Engineering, Volume XXIV, June, 1947, page 185.
6. Radiotron Designer's Handbook, Fourth Edition, 1962, page 429.

bibliography

Bahl, Dr. I.J., "Use Exact Methods for Microstrip Design," Microwaves, December, 1978, pages 61-62.
Gardiol, F.E., "HP-65 Program Computes Microstrip Impedance," Microwaves, December, 1977, pages 186-187.
Murdock, B.K., Handbook of Electronics Design and Analysis Procedures using Programmable Calculators, Van Nostrand Reinhoid, 1979.
"Letters to the Editor," Microwave Systems News, December, 1978, pages 13-14.

ham radio

improved receiver performance

 for the Heathkit SB-104A
Modifications for better sensitivity, selectivity, and overload capability

The Heath SB-104A is a good transceiver. It can be made even better by incorporating the simple modifications described in this article. The modifications, if made according to the directions given, will provide significant improvements in:

1. Receiver sensitivity, especially on the 10 - and 15 meter bands;
2. Receiver selectivity in the SSB mode;
3. Receiver strong-signal-handling capability.

These modifications, as well as a few others, have been developed over a two-year period with great care and attention to detail. Before snipping any wires, I strongly recommend that you fully understand what is being accomplished by each and every circuit change. In addition, the modified circuits should be studied and compared with the original Heath circuits.

receiver sensitivity improvements

In my opinion, the SB-104A suffers from inadequate sensitivity, especially on 10 and 15 meters. The six bandpass filters for the 80 - through 10 -meter Amateur bands, located on circuit board \mathbf{G}, are diode switched. That is, when the radio is on a particular band, diodes on circuit-board \mathbf{G} associated with the bandpass filter in use are forward-biased to provide a
low-loss if path for that band. The diodes do have some loss, however. These losses can be reduced by replacing diodes D701 through D704 (Heathkit parts designations); D707 through D710; D713, D714; and D717, D718 with Motorola MPN3401 PIN diodes,* which are intended for rf-switching use. (See fig. 1.)

To make the mods, first remove the original diodes, using a Solderwick. ${ }^{\text {TM }}$ Install the new PIN devices in place of the original diodes. Pay attention to the polarity of the MPN3401s. These devices are in a square epoxy package; the end with the ridge, or high spot, is the cathode. The leads on the MPN3401 are very short, so they must be mounted on the foil side of the board.

mixer improvements

The next step is to replace the receiver mixers. The original first and second mixers on board \mathbf{G} can be improved by substituting minicircuit Labs SBL-1 broadband mixers. ${ }^{\dagger}$
These new mixers provide better isolation between ports and have less conversion loss than the original mixers. They also have good strong-signal-handling capabilities. They are commonly used in high-performance uhf receiving systems.
To make the mixer modification, first remove the Heath first mixer, consisting of T701 and T702 and diodes D719, D721, D722, and D723. Also remove capacitors C741 and C742. Apply some epoxy to the top of one of the SBL- 1 mixers and cement it to the component side of the board, as indicated in fig. 1. The pins on the mixer should now be facing upward. Wire the mixer as shown using two $0.01-\mu \mathrm{F}$ capaci-
*Available from Circuit Specialists, Box 3047, Scottsdale, Arizona 85257.
${ }^{\dagger}$ Available from Advanced Receiver Research, Box 1242, Burlington, Connecticut 06013 .

By Richard Tashner, N2EO, 163-34 21 Road, Whitestone, New York 11357

fig. 1. Circuit board G in the Heath SB-104A showing, at right, the locations of the original bandpass-filter switching diodes, which are replaced with MPN3401 PIN diodes to reduce loss through the circuit. The original first and second mixers on board G (center and left) are replaced with SBL-1 broadband mixers to reduce conversion loss and improve strong-signal-handling capability. Original Heath parts designators are shown.
tors. The capacitors connect from the mixer module to one of each of the indicated holes in the PC board.

Next remove the Heath second mixer by removing T703, T704, D724, D725, D726, D727, and epoxy the new SBL-1 second mixer to the board. Wire as indicated. No additional capacitors are needed on the second mixer, as they already exist on the PC board.

Finally locate transistor Q702. This transistor is a 2N5109, which is an epitaxial planar low-noise device. It is used as a post amplifier between the first and second mixers.

Remove R721, the 1-kilohm collector resistor and replace it with a $1-\mathrm{mH}$ choke. Next remove R722, the 560 -ohm emitter resistor, and replace it with a 100 ohm resistor. Finally replace C745 emitter bypass capacitor with a $0.01-\mu \mathrm{F}$ disc capacitor.

The above modification serves two purposes. First, it increases collector current to about 100 mA , which greatly reduces the chances for the stage to clip on strong signals. (The 2N5109 is rated for an IC of 400 mA .) It also increases the stage gain, which is needed to overcome the losses of the second crystal filter.

At this point, reinstall board G. Turn on the SB104A, and check out the receiver to make sure it's receiving on all bands.

Next pull out the board, install the extender board in the SB-104A along with board G, and retune the filters and second mixer trimmers according to the Heath operation manual. If a scope and sweep generator are available, the board may be sweepaligned.

taming the noise blanker

The next step is to rewire the noise blanker as shown in fig. 2. This modification will allow the blanker to be totally removed from the signal path when turned off. I found that the blanker caused cross modulation, even when turned off, by virtue of its being in the signal path at all times as originally wired. The noise-blanker switch is a dpdt and no problems should be encountered in wiring it as indicated in fig. 2. Use shielded cable (RG-174/U).

improving SSB selectivity

To improve skirt selectivity on SSB, remove the original crystal filter from circuit board E and install a Fox Tango Corporation 33H2.1 filter* in its place. Mount the original SSB filter to the chassis just to the left of the VFO, directly in front of the noise blanker. I suggest that you measure the filter dimensions carefully; make a template, and tape it to the chassis before drilling the four mounting holes. Drill up from the bottom of the chassis.

The new filter is wired as shown in fig. 2, using two $15.5-\mu \mathrm{H}$ coils and two $150-\mathrm{pF}$ mica capacitors, which provide the proper impedance match for the filter.

further improvements

More modifications were made to the SB-104A to achieve the following goals:

[^12]
fig. 2. Block diagram showing cascaded filter system. A Fox Tango Corporation 33 H 2.1 filter is substituted for the original Heath crystal filter, which is relocated on the chassis as described in the text. Wiring changes to the noise blanker are also shown, completely removing it from the signal path when turned off.

1. To further improve strong-signal-handling capability
2. To improve the active audio filter
3. To reduce receiver hiss
4. To provide a slower AGC release time

Make the following changes to board F. Refer to fig. 3, which is a partial schematic of board F. (Parts designators are as shown in the Heath schematic.*) Proceed as follows:

1. R513. Remove the 2400 -ohm resistor and replace it with a 1 -meg resistor.
2. R502. Remove the 820 -ohm resistor and replace it with a 1500 -ohm resistor.
*As mentioned at the beginning of this article. it is important that you understand just what is being done when these modifications are made. Before attempting to make any changes, study the Heath schematics for the SB-104A and familiarze yrurseif with the original design so that you thoroughly understard how the changes are made, why they are made. what components are in.volved, and how to proceed without damaging the radio. The importance of this advice cannot be nverly stressed.
3. R514. Remove the 620 -ohm resistor and replace it with a 100 -ohm resistor shunted by a $0.01-\mu \mathrm{F}$ capacitor.
4. R517. Remove the 2400 -ohm resistor and short the foil with a jumper.
5. R511. Remove and discard (or save for your junkbox).
6. R512. Remove the 4700 -ohm resistor and replace it with a $1-\mathrm{mH}$ choke.
7. R516. Remove and discard.
8. R518. Remove the 10k resistor and replace it with a 1-meg resistor.
9. R572. Remove the 4700 -ohm resistor and replace it with a 2200 -ohm resistor.
10. R541. Remove the 1500 -ohm resistor and replace it with a 1000 -ohm resistor.

11. R545. Remove the 820k resistor and replace it with a 2.2-meg resistor.
12. R546. Remove the 5.6 -meg resistor and replace it with a 33 -meg resistor.
13. C535. Remove the $2.2-\mu \mathrm{F}$ tantalum capacitor and replace it with a $5-\mu \mathrm{F}$, 15 -volt electrolytic capacitor.
14. O502, Q503. Remove and replace with 2 N 3819 JFETs. See note 1 on fig. 3.

On the right-hand upper corner of board \mathbf{F}, from the component side of the board, locate the foil going to 0517 base and carefully drill a $1 / 16$-inch $(1.6-\mathrm{mm})$ or smaller hole through the base foil and the ground foil. Scrape off the green or blue coating around the holes and install a $0.1 ; \mu \mathrm{F}$ Mylar capacitor in the two holes.

Locate coil L501 and remove the associated $100-\mathrm{pF}$ mica capacitor. Replace it with a $130-\mathrm{pF}$ mica capacitor.

Solder a $10-75 \mathrm{pF}$ trimmer (Heathkit 31-78) across the pins of L501. Piggyback this trimmer on top of L501 by soldering the trimmer directly to the top of the pins on L501.

Install board F in the extender board in the SB104A. Either peak the $10-75 \mathrm{pF}$ trimmer for maximum noise, or, if a signal generator is available, put the rig on 80 meters and inject a signal into the antenna jack. Use only enough signal to get an S-5 or so meter reading. Peak the $10-75 \mathrm{pF}$ trimmer for maximum S-5 meter reading. Use care not to saturate the i-f. Use only as high a signal level as is necessary.

Next, remove board D and change capacitor C441 $(33 \mathrm{pF})$ to 100 pF . This change increases HFO injection and reduces receiver overload. Reinstall board D.

Remove transmit audio regulator board B, and make the following changes:

1. Change R217 from 4700 to 2200 ohms.
2. Remove O 207 and replace it with a Radio Shack 276-2026 transistor.

The reason for these changes on board \mathbf{B} is as follows. 0207 is the PTT switching transistor. When Q207 conducts, the relay in the SB-104A closes, and the unit is in the transmit mode. Before I changed the transistor, I'd had two failures of the 0207. For that reason, the Radio Shack device was installed; it's a tab-type transistor and is more capable of supplying the necessary collector current without premature failure.

If this change is made, you must reduce the value of R217 from 4700 ohms to 2200 ohms. If you don't plan to change 0207, leave R217 alone. When installing the new 0207, bend the leads of the transistor at
a right angle and allow the transistor to lie over the top of IC202. This will allow PC board B to slip into its compartment in the chassis.

Additional changes to board B, which are optional, are as follows. R214, the collector resistor of audio transistor Q201, may be reduced from 33k to 15 k . This change will eliminate asymmetrical clipping - which may cause slight audio distortion during transmit in some units - in O201.

Capacitor C204, the $0.01-\mu \mathrm{F}$ coupling capacitor on O201's base, may be increased to a $0.1-\mu \mathrm{F}$ Mylar. This change will increase the low-frequency response of the transmit audio. This is a personal preference. You may like the transmitter audio better one way than the other, so get some on-the-air checks from a few local stations and try the two different capacitor values.

Finally, one change suggested by Heathkit is as follows. Remove the ALC/filter board and change capacitor C 887 on 0802 's emitter to a $0.68-\mu \mathrm{F}$ tantalum. If your rig is of late vintage, the $0.68-\mu \mathrm{F}$ cap may already be installed.

test results after modification

Three other active Amateurs are located within a half mile of me. After modifications were made, I made on-the-air checks with two of these stations. I was able to tune my SB-104A $18-20 \mathrm{kHz}$ away from the other stations' 60 dB over $\mathrm{S}-9$ signals and only slight desensitization was noted. Stations as weak as $\mathrm{S}-3,30 \mathrm{kHz}$ away from the $60-\mathrm{dB}$ over S-9 local SSB signals, were solid copy, and only a slight hiss was noted while the local station was transmitting. These tests were made with the noise blanker off.

The Heathkit SB-104A was also tested side-byside with a top-of-the line Japanese transceiver. Both rigs were connected to a common antenna. The two units ran neck-and-neck as far as sensitivity was concerned. All bands, 80-10 meters, were tested. When the two rigs were tuned to the same station, the SB-104A had much less receiver hiss than the Japanese rig, which made the SB-104A much more pleasant to listen to. The modified AGC action was very pleasant to listen to. No pumping was present in the SB-104A after modification.

A comparative check of selectivity was also made on both units. Tuning the same station on upper sideband on the Japanese rig, and moving off frequency produced a high-pitched "Donald Duck" response that could be heard up to 3.5 kHz away from center frequency. However, on the SB-104A, tuning more than 2.8 kHz away from the center fre-

WHY GET ON FAST SCAN ATV?

- You can send broadcast quality video of home movies, video tapes, computer games, etc, at a cost that is less than sloscan
- Really improves public service communications for parades. RACES, CAP searches, weather watch, etc.
- DX is about the same as 2 meter simplex - 15 to 100 miles. ALL IN ONE BOX

TC-1 Transmitter/Converter
Plug in camera, ant., mic, and TVV and you are on the air. Contains AC supply, T/R sw, 4 Modules below \$ 399 ppd
PUT YOUR OWN SYSTEM TOGETHER

PACKAGE SPECIAL all four modules \$ 239 ppd

TXA5 ATV Exciter contains video modulator and x tal on 434 or 439.25 mHz . All modules wired and tested \$ 89 ppd PA5 10 Watt Linear matches exciter for good color and sound. This and all modules run on 13.8 vdc. $\$ 79$ ppd TVC-2 Downconverter tunes 420 to 450 mHz . Outputs TV ch 2 or 3 . Contains low noise MRF901 preamp. $\$ 55$ ppd

FMA5 Audio Subcarrier adds standard TV sound to the picture \$ 29 ppd
SEND SELF-ADDRESSED STAMPED ENVELOPE FOR OUR LATEST CATALOG INCLUDING: Info on how to best get on ATV, modules for the builder, complete units, b\&w and color cameras, antennas, monitors, etc. and more. 20 years experience in ATV. Credit card orders call (213) 447-4565.

Check, Money Order or Credit Card by mail.

P.C. ELECTRONICS

HamraoioCLOSEOUT Horizons sAle

Everything must gol Prices slashed beyond belief

Bound Volumes

For the Ham who wants only the very best. A full year of HORIZONS, attractively bound at a fantastically low, low price. The best way to keep those back issues handy.

Now just \$19.95 each
1977
\square HBV 77
1978
$\square H B V 78$
All three $\$ 49.95$ 1979 HBV 79

Magazine files

Cardboard files are perfect for any of the magazines you save Sturdy and compact way to organize your ham library
Just \$. 95 each
Buy three for \$1.95 and Save

Binders

Already have a full year of HORIZONS on your shelt? Want a real simple and attractive way to put them in order? HORIZONS binders will do it at a fraction of the cost of bound volumes. Covered with the same attractive material used on bound volumes, HORIZONS binders are an inexpensive and sharp way to save your precious back issues.
Now just $\$ 4.95$ each
Buy three for \$12.95 and \$ave
\square HR-HRDL
ORDER TODAY - QUANTITIES LIMITED HAM RADIO'S BOOKSTORE

Greenville, New Hampshire 03048
quency produced a sharp cutoff of the signal, and the same signal that was heard 3.5 kHz away on the Japanese rig was undetectable on the SB-104A. The i-f shift control in the Japanese rig was purposely left in the center position and not used during the checks. Turning the i-f shift knob did not help the Japanese rig; however, the cascaded filters in the SB-104A were definitely doing their job. Before modification, the SB-104A exhibited lockup of the AGC, which would manifest itself with the S-meter hanging up at S-6 across large portions of the band when a strong local signal was on. After modification, this problem totally disappeared, and just a barely perceptible increase in hiss was noted.

some afterthoughts
 concerning the SB-104A

As mentioned, the tests were made with the SB104A noise blanker turned off. Turning on the blanker still produces cross modulation. This is because the noise blanker keys on signal as well as noise. Because of the broadband nature of the rig, the blanker is subjected to 500 kHz or more of crowded spectrum when turned on, and it just can't handle that much signal. One answer to this problem is to put a monolithic crystal filter about 6 or 8 kHz wide ahead of the noise blanker. During the modifications, I placed the $2.1-\mathrm{kHz}$ filter ahead of the noise blanker, and the cross modulation totally disappeared. However, the blanker became totally ineffective on noise spikes. Propagation through the filter caused the pulses to be rounded off, rendering the blanker ineffective. For this reason only a modest filter should be placed in front of the blanker so that the pulses will not be rounded off, and the spread range of signals presented to the blanker at any one time will be reduced.

I would greatly appreciate hearing from others who have done work in this area, and I will answer questions upon receipt of a self-addressed stamped envelope.

acknowledgments

I with to thank Vinney Maida, WA2EVS, for his helpful suggestions with this project. Thanks also to Brian Selman for drafting the diagrams. Finally, my thanks to David Fentem, WB4RRC, for his ideas in his "Heath 104 Series Information Sheet," dated August 31, 1979.

bibliography

Shuch, Paul, WA6UAM, "Circuit Packaging for UHF Double-Balanced Mixers," ham radio, September, 1977, page 41.
The Radio Amateurs Handbook, Chapter 8, "Receiving Systems," Chapter 9, and "VHF and UHF Receiving Techniques," ARRL. Newington, Connecticut, 1979.
ham radio

ALL BAND COVERAGE!

A new name, a new look, and a new standard of performance in ham radio!

The Cubic ASTRO-103 expands on the highly acclaimed ASTRO102BXA with the addition of the most asked for features- RTTY, an input connector for a separate receive antenna, and of course, ALL BAND coverage from 160 through 10 meters, including the new bands at 10, 18 and 24.5 MHz . All bands are operating now, nothing to buy later, and of course WWV is covered.
With the optional 400 Hz crystal filter installed, which cascades with one of the 8-pole I.F. filters in the CWN position, and can be moved through the passband, along with QSK provisions, the ASTRO-103 is the CW operator's dream!
The ASTRO Family

Preserve
U.S. Ecomomy Buy Americamb

CUBIC COMMUNICATIONS
 A member of the Cubic Corporation family of companies

305 Airport Road, Oceanside, CA 92054 (714) 757-7525

ENGINEERING WRITER

Harris Corporation, RF Communications Div., has an excellent opportunity for a skilled writer with good theoretical knowledge and hands-on experience in mobile radio. Work with UHF/VHF FM engineers preparing instructions for state-of-the-art land mobile (including TELCO) equipment. Creative, challenging work, with all benefits. Dick Halstead, WB2PSI for details. Or call (716) 244-5830, Ex. 3815.

Harris Corp.,

RF Communications Div.

1700 University Ave.,
Rochester, NY 14610

OUT OF STATE
 CALL TOLL FREE
 ONEIDA COUNTY AIRPORT TERMINAL BUILDING

800-448-9338 ORISKANY, NEW YORK 13424
Warren-K21XN
Bob-WA2MSH

Bencher 1:1 BALUN

- Lets your antenna radiate-not your coax
- Helps fight TVI-no ferrite core to saturate or reradiate
- Rated 5 KW peak-accepts substantial mismatch at legal limit
- DC grounded-helps protect against lightning
- Amphenol ${ }^{*}$ connector; Rubber ring to stop water leakage

Rugged custom Cycolac* case, UV resistant formulation

Heavy threaded brass contact posts

Model ZA-1A $\quad 3.5-30 \mathrm{mHz}$
Model ZA-2A

Available at selected dealers, add \$2.00

postage and handling in U.S.A.
WRITE FOR LITERATURE $\mathbf{\$ 2 1 . 9 5}$
optimized $14-30 \mathrm{mHz}$ includes hardware for $2^{\prime \prime}$ boom

Paper costs up, Printing costs up, Postage costs up, Up, Up, Up . . .

333 W LAKE ST. CHICAGO, IL. 60606 - (312) 263-1808

FACSIMILLE

COPY SATELLITE PHOTOS, WEATHER MAPS, PRESS!
The Faxs Are Clear - on our full size (18-1/2" wide) recorders. Free Fax Guide.

RTTY MACHINES, PARTS, SUPPLIES
ATLANTIC SURPLUS SALES 12121 372.0349
3730 NAUTILUS AVE. BROOKLYN. N.Y. 11224

SEE US FOR THE BEST DEAL
CD ICOM

D DRAKE

TEN-TEC
 9月KENWOOD

G.I.S.M.O.

2305 CHERRY ROAD
ROCK HILL, S.C. 29730

Service Department Call 803-366-7158

Start, Extend or Renew AT THE OLD, LOWER RATES
$\square 1$ year Just $\$ 15.00$
$\square 2$ years . . . Just \$26.00
$\square 3$ years . . . Just \$35.00 ($\$ 38.50$ atter June 1)
These prices U.S.A. only See Page 3 for foreign rates
(use the handy card included in this issue or complete beiow) \square New \square Extension \square Renewal
For payment enclose check, money order or charge card information (acct. \#, expire date. bank \# for MasterCard)
Name \qquad Call

Address \qquad
City \qquad State \qquad Zip

SHORTWAVE EXCITEMENT!

Tired of watching dull TV programs? Bored by long, empty evenings? IISTEN TO THE WORID!
News, commentaries, music, folklore from foreign lands! Informative, entertaining: cultural! Clean Family FUN! Be better informed than your friends by hearing all sides on international issues directly!

THE NORTH AMERICAN SHORTWAVE LISTENER'S HANDBOOK" 1981 issue is just what you need to ACHIEVE MAXIMUM PLEASURE FROM YOUR EQUIPMENT
-Shortwave basics (Propagation. Broadcasting Conditions, Frequency \& Wavê Length. Frequency Assignments, International Time, Target Areas, Reception Tips \& Reports, more) explained in simple terms for beginners
-Official schedules of programs beamed to North America, in English \& other languages irom 70 countries. showing languages used, times and frequencies
$\$ 4.00$ ppd. Give one to your best friend: Two for $\$ 7.50$. Order now from:
LUFEL INTERNATIONAL
Box 232-HR Rego Park, NY 11374
S-LINE OWNERS
ENHANCE YOUR INVESTMENT

TUBESTERS ${ }^{\text {TM }}$

Plug-in, solid state tube replacements

- S-line performance-solid state! - Heat dissipation reduced 60\% - Goodbye hard-to-find tubes - Unlimited equipment life

TUBESTERS cost less than two tubes, and are guaranteed for, so long as you own your S-line.

SKYTEC

Box 535
Talmage, CA 95481

Write or phone for specs and prices
(707) 462-6882

ATTENTION YAESU FT-207R OWNERS AUTOMATIC SCAN MODULE
15 minutes to install; scah restants when carrier drops oft; busy switch controls automatic scan on-oft: includes module and instructions. Model AS-1 $\$ 25.00$
BATTERY SAVER KIT Model BS-1 - No more dead batteries due to memory backup - 30% less power drain when squelined - Simple to install. step-by-step instructions and parts included - 4 mA memory backup reduced to $500 \mu \mathrm{~A}$ - 45 mA receiver drain reduced to 30 mA - improved audio tidelity and loudness
ENGINEERING CONSULTING P.O. BOX 94355 RICHMOND, B. C. V6Y2A8, CANADA

STEP UP TOTELREX Professionally Engineered Antenna Systems Single transmission line "TRI-BAND ARRAY"

 tinues to outperform all competition and has for two decades. Here's why

Telrex uses a unique trap design employing 20 HiQ 7500 V ceramic condensers per antenna. Telrex uses 3 opti-mum-spaced, optimum-tuned reflectors to provide maximum gain and true F / B Tri-band performance.

For technical data and prices on complete Telrex line, write for Catalog PL 7

TRANSVERTERS FOR ATV OSCARS 7, 8 \& PHASE 3

Transverters by Microwave Modules and other manufacturers can convent your
existing Low Band rig to operate on the VHF \& UHF bands Models also available for 2 M to 70 cm and for ATV operators from Ch2/Ch3 10.70 cms Each transverter contains both a ix up-converter and a Rx down-converter Write tor detaits of the largest selection avardable

SPECIFICATIONS
$\begin{array}{lrlr}\text { Output Power } & 10 \mathrm{~W} & \text { Receiver Gain } & 30 \mathrm{~dB} \text { typ } \\ \text { Receiver N. F. } & 3 \mathrm{~dB} \text { typ. } & \text { Prime Power } & 12 \mathrm{~V} \text { DC }\end{array}$
Attention owners of the original MM\$432-28 models Update yout transverter to operate OSCAR $8 \&$ PHASE 3 by adding the 434 to 436 MHz range Mod kit including full instructions $\$ 26.50$ plus $\$ 150$ shipping, etc

Prices start at $\$ 199.95$ plus $\$ 4.50$ shipping.

Send 30c (2 stamps) tor full details of KVG crystal products and all your VHF \& UHF equip ment requirements.

measuring receiver dynamic range: an addendum

In a previous article ${ }^{1}$ I explored methods for determining performance of manufactured receivers using simple equipment and procedures. I'd like to update these data with the results of some further measurements (table 1).
table 1. Updated measurements of manufactured receiver performance in terms of local-oscillator phase noise. Data supplements those in reference 1.

receiver	two tone input (dBm)	blocking (dBm)	bandwidth $\left(\mathrm{kHz}_{2}\right)$ at a rejection of				S-meter (S9 level, $\mu \mathrm{V}$, and linearity)
			60 dB	70 dB	80 dB	90 dB	
Collins KWM 380	-33	-40^{4}	10.06	15.66	-6	-6	71 exceilent
Drake TR7/DR7 No. 2 late	-34	-424	3.9	4.3	4.6	4.8	63 good
Ten-Tec Omni-D No. 2	-38	-21	4.1	4.7	5.9	9.5	63 good
Drake TR7/DR7 No. 3 late	-39	-444	4.3	4.9	5.6	-6	20 good
Drake [R7/DR7 No. 1 early	-41	-32	3.8	5.6	6.3	6.6	22 fair
Ten-Tec Omni-D, 8 series	-42	-21	4.0	5.0	6.5	11.4	71 good
Collins 75538 late	-44	-20	4.5	5.1	5.8	6.3	250 good
ICOM IC-701 No. 1	-46	-26	5.2	9.4	15.4	-	20 poor
Swan Astro 102 BX	-46	-36	4.2	7.5	15.2	-	71 fair
Yaesu FT-107M	-46	-38	3.6	3.8	4.0	24	2 bad
Ten- Tec Omni-D No. 1	-48	-20	4.4	6.3	10.1	-	36 good
Ten-Tec 544 (Triton IV)	-48	-30	6.0	-	-	-	20 poor
ICOM IC-701 No. 2	-49	-45	7.4	-	-	-	35 fair
Swan Astro 150	-50	-30	4.4	5.1	12	-	89 fair
Atlas 350XL	-51	-28		4.0		7.0	150 poor
Collins 75538 early	- 51	-32					
CIR Astro 200	-52	-35					
Yaesu FT-1012D No. 1	-53	-43	3.4	3.8	5.3	6.5	25 fair
Ten-Tec Century 21	-54	-20					
Yaesu FT-901DM	-56	-29	3.6	7.6	16.7	-	8 poor
Drake R4C	- 57	-345	4.0	4.5	4.6	4.6	16 good
Yaesu FT-10izD No. 2	-57	-41	3.8	4.0	4.1	5.0	22 good
Tern-Tec Argonaut ${ }^{1}$	-58	-35	4.0	5.5	14	18	8 poor
Kenwood TS-820S	-60	-34					110 good
Kenwood R-820	-60	-424	3.8	5.2	12	-	50 excellent
Kenwood TS-120S No. 1	-62	-40	4.1	8.0	-	-	50 fair
Yaesu FT-3015	-64	-36					30 poor
Heathkit SB-3032	-64	-41	4.4	6.0	9.0	10	70 good
Coilins KWM2 No. 2	-65	-26	4.5	5.1	6.0	6.3	20 poor
Yaesu FT-101E	-65	-36					10 good
Signal One CX7A3 Yaesu FT-301D	-66 -68	> $\begin{array}{r}-6 \\ -32\end{array}$	3.2	6.3	7.1	7.1	20 excellent
Yaesu FT-301D	-68	-32					65 poor
Kenwood TS-520S	-72	-36					70 fair
Collins KWM2 No. 1	-74	-33					
Kenwood TS-120S No. 2 and No. 3	$\begin{aligned} & \text { appx. } \\ & -100 \end{aligned}$	$\begin{array}{r} \text { appx, } \\ -50 \end{array}$					
UTHER EQUIPMENT							
Drake R7 preamp off	-31	-43^{4}	4.2	5.0	6.0	-	50 excellent
preamp on	-42	-484					
Kenwood TS-180S	-66	-50	4.2	4.3	4.5	4.8	80 good
	-71	-51	4.4	6.8	24	--	

Notes:
1 Modified ior maximum selectivity.
2 Modified nixers.
3 Modified for maximum sensitivity

[^13]As you can see by examining table 1, the next area deserving attention is reduced local-oscillator phase noise. Several of the better radios could be much improved in the reciprocal mixing area, thus better use could be made of their excellent filters if the phase-locked loop bandwidth were reduced.

Another problem cropping up is the presense of many strong spurious responses when receiving a single strong signal, as in the selectivity test. ${ }^{1}$ Almost every radio using a synthesized local oscillator has this problem. Equipment using a more conventional scheme is usually clean or has only an occasional spur.

Let's keep up the pressure on receiver manufacturers to do a better job in these areas.

reference

1. Sidney Kaiser, WB6CTW, "Measuring Receiver Dynamic Range," ham radio, November, 1979, page 56.

Sid Kaiser, WB6CTW

geostationary satellite bearings with the TI-58/59 programmable calculator

This Ti-58/59 program will give the elevation and azimuth antenna bearings needed to acquire geostationary satellites for any location on earth.

WB8DOT ${ }^{1}$ gave an excellent description of the seven-step equation used, so I will give only the details needed for use with the TI-58/59 calculator.
The program takes from 4 to 9 seconds to run after E^{\prime} is pressed. Initial memory partitioning is adequate. Angular mode is degrees. Elevation and azimuth are displayed to the nearest
tenth of a degree, close enough for any ham application An elevation of 90 degrees is straight up so no azimuth is needed.

reference

1. Ralph E. Taggart, WB8DOT "Microcomputers and Your Satellite Station," 73, February, 1980.

Larry Kushner, WA6BKC
title geostationary sateluite beabingsage i of 1 . II Progrommable PROGRAMMER LARRY KUSHNER DATE JUNE 10, 1980 Program Record
Partitioning (Op 17) (4, 7, 9 . 5,9 Library Module __NONE
PAOORAM DESCRIPTION
THIS PROGRAM WILL CALCULATE THE ELEVATION \& AZIMUTH ANTENN BEARINGS NEETE TO MRE geostationary satelitites, given: the station jocation in doc.mms? format and the SAtellite subpoint longitude in ddd.d format, the elevation and aztmuth will be in dod.d format. if the elevation is a (-) number the satellite can not be seen from your location. the equation used is from fer. 198073 magazine by wbidyt.

Title geostationary sateli le bearing programmer larry kushner. wafgec

LOC	CODE	KEr	COMMENTS	Loc	coos	KEY	COMMENTS	0	CODE	KEY	COMMENTS
0	16	LbL		55	09	9		110	42	41	
	11	A			00	0			43	RCL	
	12	570			75	-			as	13	
	99	09			43	kCL			77	CiE	
	92	8. 5			04	04			01	01	
	76	[.6.		60	95	$=$			20	20	
	12	${ }^{\text {B }}$			38	SIN			03	3	
	42	570			75	-			06	6	
	${ }^{18}$	08			93				00	0	
	41	R/S			${ }^{01}$	1			75	-	
10	76	I 131			05	5		120	43	ricr.	
	:3	c			01	1			05 9 9	05	
	42	STO			03	3			95	$=$	
	[17	07			95				58	EIX	
	91	R/S			55.	1			01	31	
	15	LBL		70	53	1			52	TE	
	34	-			09	9			22	INV	
	43	RCL			${ }^{\circ} \mathrm{O}$	0			52	EE	
	06	Oe			75	-			22	inv	
	41	R/S			43	RCL			$5_{6} 8$	FIX	
20.	76	1 BL .			124	04		130	61	GTO	
	15	E			54)			01	01	
	43	RCL			39	\cos			49	49	
	0.5	05			95	\%			oc		
	41	R/S			22	Inv			42	STo	
	76	Le\%,		80	30	tan			${ }^{05}$	05	
	10	E.			58.	FIX			09	9	
	\square^{2}	INV			01	01			cs	\%	
	87	IfF			52!	EE			4%	STC	
	17	07			221	inv			05	06	
30	$\therefore 5$	CLR			52	Er		(A)	71	p / c	
	12	X-T			5	INV			${ }^{12}$	$\bigcirc \mathrm{Cr}$	
	43	RCL			58	Fix			05	015	
	${ }^{18}$	${ }_{0} 8$			4.42	${ }_{06}{ }^{510}$			7	ge	
	88	DMS				06			'12	01	
	75	-		90	43	tol.			18	49	
	43	RCH 07			09 88	OS			C1		
	67 95	$\stackrel{07}{=}$			98 30	LMS			001		
	42	STo			55	1			42 .	Sto	
40	03	03			43	ac L		150	05	C5	
	39	\cos			?	「:			43	RCS.	
	65	x			30	TAN			06	06	
	43	RCL			95	\cdots			91	R/S	
	c9	09			94	'/-					
	88	DNS		100	22	Inv					
	19	cos			39	cos					
	95 $? 2$	inv			42	STO 05					
	72 39	in cos			05	(25					
50	42	ST0			19	19				RGEEC	
	04	04			25	CLR			悬	${ }^{2} 21$	${ }^{83} 8{ }^{86}$
	57	$E ¢$			$8 \cdot$	IFF					
	01	101 3			$0 \cdot$	37			Iexas	1 NsI	MENTS

1900 MHz to 2500 MHz DOWN CONVERTER
This receiver is tunable over a range of 1900 to 2500 m
i-f range approximately 54 to 88 mc (Channels 2 to 7).
PC BOARD WITH DATA $\$: 9.99$
PC BOARD WITH CHIP CAPACITORS 13. $\$ 44.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY $\$ 69.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY PLUS 2N6603 $\$ 89.99$
PC BOARD ASSEMBLED AND TESTED $\$ 99.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY, POWER SUPPLY AND ANTENNA $\$ 159.99$
POWER SUPPLY ASSEMBLED AND TESTED $\$ 49.99$
YAGI ANTENNA 4 ' LONG APPROX. 20 TO 23 dB GAIN $\$ 59.99$
YAGI ANTENNA 4' WITH TYPE (N, BNC, SMA Connector) \$64.99
2300 MHz DOWN CONVERTER
Includes converter mounted in antenna, power supply, plus 90 DAY WARRANTY $\$ 259.99$
OPTION \# 1 MRF902 in front end. (7 dB noise figure) $\$ 299.99$
OPTION \#2 2N6603 in front end. (5 dB noise figure) $\$ 359.99$
2300 MHz DOWN CONVERTER ONLY$\$ 149.99$
0 dB Noise Figure 23 aB gain in box with N conn. Input F conn. Output $\$ 169.99$7 dB Noise Figure 23 dB gain in box with N conn. Input F conn. Output
$\$ 189.99$
5 dB Noise Figure 23 dB gai. in box with SMA conn. Input F conn. Output $\$ 15.00$
Shipping and Handing Cost:Receiver Kits add $\$ 1.50$, Power Supply add $\$ 2.00$, Antenna add $\$ 5.00$, Option $1 / 2$ add $\$ 3.00$, For complete system add $\$ 7.50$.
INTRODUCING THE HOWARDICOLEMAN TVRO CIRCUIT BOARDS
(Satellite Receiver Boards)
DUAL CONVERSION BOARD$\$ 25.00$This board provides conversion from the 3.7-4.2 band first to 900 MHz where gain and bandpass filtering are provided and, second, to 70 MHz .The board contains both local oscillators, one fixed and the other variable, and the second mixer. Construction is qreatly simplified by the useof Hybrid IC amplifiers for the gain stages. Bare boards cost $\$ 25$ and it is estimated that parts for construction will cost $\$ 270$. (Note: The twoAvantek VTO's account for $\$ 225$ of this cost.)47 pF CHIP CAPACITORS$\$ 6.00$
For use with dual conversion board. Consists of 6-47pF
70 MHz IF BOARD modulator. The on-board band pass filter can be tuned for bandwidths between 20 and 35 MHz with a passband rippie of less than $1 / 2$ dB. H ' Y -$\$ 25.00$brid ICs are used tor the gain stages. Bare boards cost $\$ 25$. It is estimated that parts for construction will cost less than $\$ 40$.
01 pF CHIP CAPACITORS
For use with 70 MHz IF Board. Consists of $7-.01 \mathrm{pF}$$\$ 7.00$DEMODULATOR BOARD4v. 10
This circuit takes the 70 MHz center frequency satellite TV signals in the 10 to 200 millivolt range, detects them using a phase locked locn, de-emphasizes and filters the result and amplifies the result to produce standard NTSC video. Other outputs include the audio subcarrier, a DCvoltage proportional to the strength of the 70 MHz signal, and AFC voltage centered at about 2 volts DC. The bare boards cost $\$ 40$ and totalparts cost less than $\$ 30$.
SINGLE AUOIO$\$ 15.00$This circuit recovers the audio signals from the 6.8 MHz frequency. The Miller 9051 coils are tuned to pass the 6.8 MHz subcarrier and tieMiller 9052 coil tunes for recovery of the audio.
DUAL AUDIO$\$ 25.00$
Duplicate of the single audio but also covers the 6.2 rangeDC CONTROL$\$ 15.00$This circuit controls the VTO's, AFC and the S Meter.

TERMS:

WE REGRET WE NO LONGER ACCEPT BANK CARDS.
PLEASE SEND POSTAL MONEY OFDER, CERTIFIED CHECK, CASHIER'S CHECK OR MONEY ORDER.
PRICES SUBJECT TO CHANGE WITHOUT NOTICE. ALL RETURN ORDERS SUB.JECT TO PRIOR APPROVAL BY MANAGEMENT. ALL CHECKS AND MONEY ORDERS IN US FUNDS ONLY.
ALL ORDERS SENT FIRST CLASS OR UPS.
ALL PARTS PRIME AND GUARANTEED.
WE WILL ACCEPT COD ORDERS FOR $\$ 25.00$ OR OVER, ADD $\$ 2.50$ FOR COD CHARGE.
PLEASE INCLUDE $\$ 2.50$ MINIMUM FOR SHIPPING OR CALL FOR CHARGES.
WE ALSO ARE I OOKING FOR NEW AND USED TUBES,
TEST ECUIPMENT, COMPONENTS, ETC.
WE ALSO SWAP OR TRADE.

[^14]
electronics

NPN SII ICON RF POWER TRANSISTORS

designed for power amplifier applications in industrial com－ mercial and amateur radio equipment to 30 MHz ．
－Specified 12．5 Volt． 30 MHz Characteristics
Output Power $=80$ Watts
Minimum Gain $=12 \mathrm{~dB}$
Efficiency $=50 \%$

NPN SILICON RF POWER TRANSISTOR

MRF472
$\$ 2.50$
designed primarily for use in large signal output amplifier stages Intended for use in Citizen Band communications equipment operating at 27 MHz ．High breakdown voltages allow a high percentaqe of up modulation in $A M$ circuits．
－Specified 12.5 V .27 MHz Characteristics－
Power Output $=4.0 \mathrm{~W}$ atts
Power Gain $=10 \mathrm{~dB}$ Minımum
Efficiency $=65 \%$ Typical

NPN SILICON RF POWER TRANSISTOR

designed primarily for use in single sideband linear amplifier
 output applications in citizens thand and other communications equipment operating to 30 MHz ．
－Characterized for Single Sideband and Large Signal Amplifier Applications Utilizing Low－Level Modulation．
－Specified $136 \mathrm{~V}, 30 \mathrm{MHz}$ Characteristics
Output Power 12 W （PEP）
Minimum Efficiency－ 40%（SSB）
Output Power 4.0 W （CW）
Minımum Efficiency $=50 \%$（CW）
Minınum Power Gain－ 10 dB （PEP \＆CW）
－Common Collector Characterization

NPN SILICON RF POWER TRANSISTOR

designed for power amplifier applications in industrial． commerical and amateur radio equipment to 30 MHz
－Specified 125 Volt． 30 MHz Characteristics
Output Power 80 Watts
Minimum Gain 12 （B
Efficiency 50%
－Cdpabie of Withstanding 30.1 LoadVSWR＠Rated $P_{\text {out }}$ and $V C C$

MHW710

-2
$\$ 46.45$
440 to 470 MC

UHF POWER AMPLIFIER MODULE

designed for 125 vole UHF power amplifier applications in industrial and commerciat FM equipment operating from 400 to 512 MHz ．
－Specified 12.5 Volt．UHF Characteristics
Output Power 13 Watts
Minimum Gain－ 194 dB
Harmonics 40 dB
－ 50 si Innut Output Impedance
－Guaranteed Stability and Ruggedness
－Gain Controi Pin for Manual or Automatic Output Leval Contiol
－Thin Film Hybrid Construction Gives Consistent Performance and Reliability

Tektronix Test Equipment

Scopes with Plug－in＇s

\qquad

Tubes

2！	1 ！$\quad .$.	Af．uns	S12e．（i）	1，14tim	12.818
	［176，（17）	4itimen	（1），in		\％6．
1	cter	At 5150	351．0．1	1，估	55．01）
Brat cat：	，1：	1． 11.60 c	1%	bis？	，\％ 5
1－\％；	1\％\％	$\because:$	¢介．m	bisa：	6.31
－ 6.	\therefore	二小介	4.	1 \％	1．$\%$
：		1！－＂	$\because \cdot$	$6^{4} 9$	14.7
－\％	＇．	以，	14	fre：	12．7\％
：；$:$	\because	ध3：	1，	1174	： 6 ： 1
1．311．．nin	1． 5 ．${ }^{\text {a }}$	\cdots	－	Cl_{6}	44.5
\cdots	1：＇．．${ }^{\text {a }}$	！\％	1，	त䉼	－\％
： $1:=$		\therefore a	！ 4	－ 12 h	18
4！（40）	ソ唯	$\because \cdot$	\cdots	$\cdots 2$	い㤩
：10，	！\％	1．n：A	13 ：		1／4．01
$\therefore 1 \%$	\therefore ：	－\because	\therefore	94.	－3，
	1．1． 3.3	－16，	－．		1\％
¢，\％	1．1．141		：（II）	＂M90：	4，¢90

NEW－TOLL－FREE NO．800－528－0180－please，orders only！

$\mathfrak{d} \mathbf{M Y}$
 electronics

MICROWAVE COMPONENTS

ARRA

2416	Variable Attenuator
$3614-60$	Variable Attenuator 0 to 60 dB
KU520A	Variable Attenuator 18 to 26.5 GHz
$4684-20 \mathrm{C}$	Variable Attenuator 0 to 180 dB
$6684-20 \mathrm{~F}$	Variable At tenuator 0 to 180dB

General Microwave
Directional Coupler 2 to 4 GHz 20 dB Type N

Hewlett Packard

Narda

$4013 \mathrm{C}-10 /$
$4014-10 /$
$4014 C-6 /$
$4015 \mathrm{C}-10 /$
$4015 \mathrm{C}-30 /$
$3044-20$
$3040-20$
$3043-20 /$
$3003-10 /$
$3003-30 /$
$3043-30 /$
22574
3033
3032
$784 /$
22377
$720-6$
3503

22540A Directional Coupler 2 to 4 GHz lodb Type SMA 22538 Directional Coupler 3.85 to 8 GHz l00B Type SMA 2876 Directional Coupler 3.85 to 8 GHz 6 dB Type 5MA 22539 Directional Coupler 7.4 to 12 GHz 10dB Type SMA 3105 Directional Coupler 7 to 124 GHz 30 dB Type SMA Directional Coupler 4 to 8 GHz 20 dB Type N irecitonal Coupler 240 to 500 MC 20 dB Type 22006 Directional Coupler 1.7 to 4 GHz 20 dB Type N 22011 Directional Coupler 2 to 4 GHz 10 dB Type N 22011 Directional Coupler 2 to 4 GHz lodB Type N 22012 Directional Coupler 2 to 4 GHz 30 dB Type N Directional Coupler 2 to 4 GHz 20dB Type N Coaxial Hybrid 2 to 4 GHz 3 dB Type N Coaxial Hybrid 950 to 2 GHz 3 dB Type 22380 Variable Attenuator 1 to godB 2 to 2.5 GHz Type SMA Waveguide to Type N Adapter Fixed Attenuator 8.2 to 14.4 GHz 6 dB Waveguide

PRD

	PRD
	U101
	$\times 101$
	C101
\$ 50.00	205A/367
75.00	1958
100.00	185BS]
100.00	196 C
100.00	1708
	588A $140 \mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}$
	109J,1

12.4 to 18 GHz Variable Attenuator 0 to 60 dB	300.00
8.2 to 12.4 GHz Variable AAtenuator 0 to 60 dB	200.00
Variable Attenuator 0 to 60 dB	200.00
Slotted 1 ine with Type N Adapter	100.00
8.2 to 12.4 GHz Variable At tenuator 0 to 50 dB	100.00
7.05 to 10 GHz Variable Attenuator 0 to 40 dB	100.00
8.2 to 12.4 GHz Variable Attenuator 0 to 45 dB	100.00
3.95 to 5.85 GHz Variable Attenuator 0 to 45 dB	100.00
Frequency Meter 5.3 to 6.7 GHz	100.00
Fixed Attenuators	25.00
Fixed Attenuators	25.00
2692 Variable Attenuator +30 to 60 dB	100.00

COMPUTER I.C. SPECIALS
DESCRIPTION
PRICE
$1 \mathrm{~K} \times 8$ EPROM
$2 K \times 8$ EPROM 5Volt Single Supply
K $\times 4$ Static RAM 450ns
$1 k \times 4$ Static RAM 250 n
$1 K \times 4$ Scatic RAM 350 n
$4 K \times 1$ Dynamic RAM
AK $\times 1$ Dynami RAM
256×4 Static RAM
256×4 static RAM
JK $\times 1$ Static RAM 55 ns
IK $\times 1$ Static RAM 55 ns
$4 \mathrm{~K} \times \mathrm{l}$ Static RAM 320 ns
$4 K \times 1$ Static RAM $200 n 5$
$4 \mathrm{~K} \times 2$ Static RAM 200 ns
$1 \mathrm{~K} \times 1$ Static RAM 300 ns
C.P.U.'s ECT.

MC6800t	Microprocessor
MCM6810AP	128×8 Static RAM 450ns
MCM68A10P	128×8 Static RAM 360ns
MCM68B10P	128×8 Static RAM 250 ns
MC6820 ${ }^{\text {P }}$	PIA
MC68201	PIA
MC6821 ${ }^{\text {P }}$	PIA
MC68B21P	PIA
MCM6830. 7	Mikbug
MC6840 ${ }^{\text {P }}$	PTM
MC6845 ${ }^{\prime}$	CRT Controller
MC68451.	CRT Controller
MC68501	ACIA
MC6852F	SSDA
MC6852L	SSDA
MC6854P	ADLC
MC6860CJCS	0-600 BPS Moder
MC6862L.	2400 BPS Modem
MK3850N-3	F8 Microprocessar
MK3852P	F8 Memory Interface
MK 3852N	F8 Memory Interface
MK3854N	F8 Direct Memory Access
8008-1	Microprocessor
8080A	Microprocessor
280CPU	Microprocessor
6520	PIA
6530	Support For 6500 series
2650	Microprocessor
TMS 1000NL	Four Bit Microprocessor
TMS4024NC	9×64 Digital Storage Buffer (FIFO)
TMS6011NC	UART
MC14411	Bit Rate Generator
AY5-4007D	Four Digit Counter/Display Orivers
AY5-9200	Repertory Dialler
AY5-9100	Push Button Telephone Diallers
AY5-2376	Keyboard Encoder
AY 3-8500	TV Game Chip
TR1402A	UART
PR1472B	UART
PT1482B	UART
8257	DMA Controller
8251	Communication Interface
8228	System Controller \& Bus Driver
8212	8 Bit Input/Output Port
MC14410CP	2 of 8 Tone Encoder
MC14412	Low Speed Modem
MC14408	Binary to Phone Pulse Converter
MC14409	Binary to Phone Pulse Converter
MC1488L.	RS232 Driver
MC1489L	RS232 Receiver
MCl405L	A/D Converter Subsystem
MC1406L	6 Bit D/A Converter
MC1408/6/7/8	8 Bit D/A Converter
MC.1330P	Low Level Video Detector
MC 1349/50	Video If Amplifier
MC17331.	LM733 OP Amplifier
LM565	Phase Lock Loop

CALL TOLL FREE 1-800-426-7741

The Northwest's Largest Ham Store ALASKA RESIDENTS CALL COLLECT 1-206-784.7337

AEA MORSEMATIC

- Dual Microcomputers provide many features.
- Approximately 500 character memory with unique "soft-partitioning."
- Morse trainer mode with programmable speed-up.
- Beacon mode for VHF DX scheduling.
- Automatic serial number sequencing.
- Far too many features to describe; use it and you will believe it!

C-COMM

6115-15th AVE. N.W. SEATTLE, WA. 98107 (206) 784-7337

AEA ISOPOLE VHF ANTENNAS

Finally - a properly decoupled antenna with superior performance at a reasonable cost. Raise more repeaters or increase your simplex distance!

- 144 or 220 MHz bands.
- Achieve maximum attainable gain for a twin $5 / 8$ wavelength antenna.
- Patterns independent of mounting or feedline length.
- Greater than 9 MHz band width.
- Completely weather protected matching network and RF connections.
- Easiest to assemble. Mounts on standard TV master (NOT SUPPLIED).

IC-2AT AND ACCESSORIES NOW AVAILABLE FOR IMMEDIATELY DELIVERY

Dealers For: AEA, ALLIANCE, ALPHA, AVANTI, BENCHER, B\&W, CDE, CUSHCRAFT, DAIWA, DENTRON, DRAKE, FLUKE, HUSTLER, HYGAIN, ICOM, INLINE, KLM, LARSEN, LUNAR, MFJ, NPC, NYE, ROHN, SHURE, TEMPO, TELEX, TEN-TEC, VIBROPLEX, YAESU, AND MORE.

Mon. thru Sat. 9:00 a.m. to 5:30 p.m.

Prices and specifications subject to change without notice or obligation

33 LLEMENTS. PHYSICALLY STRONGER THAN LOOR YAGI. EQUAL IN GAIN Coming Soon - Superverter ATV Xmtr

[^15]TIRMS: COD - MO. BANK CARD. CHECK

HOURS: $830 \mathrm{AM}-4.30 \mathrm{PMCS}$ T $\mathrm{M}-\mathrm{F}$

ANTENNA BOOKS by Bill Orr, W6SAI ALL ABOUT CUBICAL QUAD ANTENNAS

The cubical quad antenna is considered by many to be the best $D X$ antenna because of its simple, lightweight design and high performance. In Bill Orr's latest edition of this well known book, you'll find quad designs for everything from the single element to the multielement monster quad, plus a new, higher gain expanded quad ($\mathrm{X}-\mathrm{O}$) design. There's a wealth of supplementary data on construction, feeding, tuning, and mounting quad antennas. It's the most comprehensive single edition on the cubical quad available. 112 pages (c) 1977.
\square RP-CQ
Softbound \$4.75

THE RADIO AMATEUR ANTENNA HANDBOOK

by William I. Orr, W6SAI and Stuart Cowan, W2LX If you are pondering what new antennas to put up. we recommend you read this very popular book. It contains lots of well illustrated construction projects for vertical, long wire, and HF/VHF beam antennas. But. you'il also get information not usually found in antenna books. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs the yagi antenna, information on baluns and how to use them, and some new information on the increasingly popular Sloper and Deita Loop antennas. The text is based on proven data plus practical, on-theair experience. We don't expect you'll agree with everything Orr and Cowan have to say, but we are convinced that The Radio Amateur Antenna Handbook will make a valuable and often consulted addition to Antenna Handbook will make a valuable
any Ham's library. 190 pages. © 1978

BEAM ANTENNA HANDBOOK

Here's recommended reading for anyone thinking about putting up a yagi beam this year, It answers a lot of commoniy asked questions like What is the best element spacing? Can different yagi antennas be stacked without losing performance? Do monoband beams outperform tribanders? Lots of construction projects, diagrams, and photos make reading a pleasurable and informative experience. 198 pages. © 1977 \square RP-BA Softbound \$5.95

Please add $\$ 1.00$ to cover shipping and handling.
HAM RADIO'S BOOKSTORE
GREENVILLE, N. H. 03048

flea market四回

RATES Noncommercial ads $10 ¢$ per word；commercial ads 60¢ per word both payable in advance．No cash discounts or agency commissions allowed．

HAMFESTS Sponsored by non－profit organizations receive one free Flea Market ad（subject to our editing）．Repeat inser－ tions of hamfest ads pay the non－commer－ cial rate．

COPY＝No special layout or arrange－ ments available．Material should be type－ written or clearly printed（not all capitals） and must include full name and address． We reserve the right to reject unsuitable copy．Ham Radio cannot check each advertiser and thus cannot be held respon－ sible for claims made．Liability for correct－ ness of material limited to corrected ad in next available issue．

DEADLINE 15th of second preceding month．

SEND MATERIAL TO：Flea Market，Ham Radio，Greenville，N．H． 03048.

VACKAR VFO KITS．Write Direct Conversion Technique， Box 1001，Dept．4FM， 535 No．Michigan Ave．，Chicago． illinois 60611 ．

WANTED：Collins 455 kHz mechanical filters，F455 varie－ ty．Give me bandwidth，condition and price．W9JTO，Paul Sexauer， 515 Lee Road，West Chicago，IL 60185.

CUSTOM EMBROIDERED EMBLEMS－Your design， Iow minimum．Informational booklet．Emblems，Dept 65， Ljttleton，New Hampshire 03561.

MANUALS for most ham gear 1937／1970．Send $25 ¢$ for ＂Manual Catalog．＂H．l．，Inc．，Box．H8E4，Council Blutts， Iowa 51502.

FOR SALE：Wilson Mark IV with touch tone，good condi－ tion，\＄150．00．William Harris，Route 1，Guthrie，KY 42234.

SATELLITE TELEVISION：Information on building or buying your earth station．Six pages of what＇s needed， where to get it，costs，etc．$\$ 4.00$ to Satellite Television， RD \＃3，Oxiord，NY 13830.

SELL：Swan 400 transceiver，external VFO，PS，key，mic．， \＄250．00．KA4EVR，Phil Nigash， 325 Kelli，Farmington，AR 72730.

HAM RADIO REPAIR－Professional lab，personal ser－ vice．＂Grid＂Gridley，W4GJO．April thru October：Rt．2， Box 138B，Rising Fawn，Georgia 30738，（404）657－7841． November thru March： 212 Martin Drive，Brooksville， Florida 33512．（904）799－2769．
HALLICRAFTERS SR－ 150 good 5BSSB rig．Mobile and base power supplies．$\$ 250.00$ or trade．Box 133 W．P．I．， Worcester，MA 01609．WB1EDF，

BUY－SELL．TRADE．Send $\$ 1.00$ for catalog．Give name address and call letters．Complete stock of major brands new and reconditioned amateur radio equipment．Call for best deals．We buy Collins，Drake，Swan，etc．Asso－ ciated Radio， 8012 Conser，Overland Park，KS 66204. （913） 381 －5900．

RF SPEECH PROCESSOR，famous Comdel unit，con－ nects between mike and rig，$\$ 45.00$ ．John Skubick，K8JS 791．106 Ave．，Naples，FL 33940.
MIRROR－IN－THE－LID，and other pre－1946 television set wanted．Paying $500+$ for any complete RCA＂TRK＂ series，or General Electric＂HM＂series set．Also looking for 12AP4，MW－31－3 picture tubes，parts，literature on pre－war television．Arnold Chase，WA1RYZ， 9 Rushleigh Road，West Hartford，Conn． 06117 （203）521－5280，

NEW ZEALAND AMATEUR wishes to complete his ＂Ham Radio＂collection．Requires 1968，1969， 1970 com plete and January 1971．Will purchase 1971 complete if offered．Reply stating years available and price required to：G．Moles，ZL2AKI，International Callbook Address．

AMATEUR REPAIR：Professional service，reasonable rates，ALL brands．USA KDK repair center．Amateur Radio Repair Center， 1020 Brookstown Ave．，\＃5， Winston－Salem，NC 27101 （919）725－7500．

FOUR ELEMENT QUAD ANTENNA－Hygain big gun for 11 meters，new boxed，cost $\$ 260.00$ ．Must sell，best of fer．Raiph Jannini，KA1FAA， 16 Hansom Rd．，Andover， MA 01810.

QSLs \＆RUBBER STAMPS－Top Quality！Card Samples and Stamp Info－ $50 c$－Ebbert Graphics 5R，Box 70 ， Westerville，Onio 43081.
MOSLEY ANTENNAS TA－33，CL．33，CL－36 etc．WII ex－ port．MacFarlane Electronics，Battersea，Ontario， Canada KOH 1 He ．

MOTOROLA RADIOS WANTED：I need micors，molracs， mocom 70＇s，H．T＇s，and bases ．．．．anything Motorola newer than 12 years．I pay all shipping．Len Rusnak， WA3TJO 301 －441－1221．

MOTOROLA HT－220－PL slim line，mid－band $150-162 \mathrm{MHz}$ ． Wren 8 freqboard．Not butchered．HT，case，charger， book，extra boot and battery，$\$ 340.00$ ．Buchanan， 3701 East D．Ave．，Kalamazoo，MI 49004.
CRYSTALS FM 2 METERS STILL AVAILABLE！Crystals for equipment on our parts list，\＄4．50 each．For equip－ ment list，send sell addressed stamped envelope． SAVOY ELECTRONICS，P．O．Box 5727，Ft．Lauderdale， FL 33310 －Tel．（305）563－1333．

SUPER QRP with Direct Conversion＇s 5 watt transmitter kits．Write Direct Conversion Technique，Box 1001，Dept． 4FM． 535 No．Michigan Ave．，Chicago，Illinois 60611.
WANTED：Motorola micor base stations， $406-420 \mathrm{MHz}$ ． AK7B， 4 Ajax PI，Berkeley，CA 94708.

SATELLITE TELEVISION．HOWARD／COLEMAN boards to build your own receiver．For more information write： Robert Coleman，Rt．3，Box 58－AHR，Travelers Rest，SC 29690.

TUBE TESTER，dynamic plate conductance，Jackson Elec．Inst．model 648S，new with latest roll chart，$\$ 75.00$ or best offer．F．O．B．Fort Pierce，FL，F．Pierce， 403 Susan Dr．，W4OZS．

DRESS UP your shack quickly for peanuts．Seven 20 pocket plastic holders display 140 QSL＇s or file 280 for $\$ 4.00$ prepaid．K4NMT，Box 198 H ，Gallatin，Tennessee 37066.

500 QSL＇s，\＄10．Catalogue， 743 Harvard，St．Louis，MO 63130.

COMPUTER LOG program for TRS． 80 cassette or disk． Contesters can check for duplicate entries in seconds． Search，sort，change，delete，display or print．\＄14．95 or send SASE for more into．dBt Engineering， 527 William， Scotch Plains，NJ 07076.

VERY in－ter－est－ing！Next 6 issues \＄2．Ham Trader ＂Yellow Sheets＂，POB356，Wheaton，IL 60187.

WANTED：Service Manual／Wiring Diagram for Mallory Power Supply，Model 12RS 140 manufactured by P．R． Mallory and Co．，Inc．，Indianapolis，Ind．John W．Shull， Sr．， 1410 Wolverine．Ancharage，AK 99504.

Sends Morse，Baudot and ASCII from keys or Morse from paddle．Random CW with lists for practice．Meters for speed and 256 character buffer． 256 character message memory in four sections．Editing and all prosigns． 110 Baud ASCII， 45 Baud Baudot．Con－ tinuous control of speed，weight，pitch and volume．PTT，KOS control．Auto－ matic serial number and time．

KB－4900

\＄39905
Write for information：
CURTIS ELECTRO DEVICES vish INCORPORATED BOX 4090
MOUNTAIN VIEW，CA 94040 TELEPHONE（415）494－7223

FULL PRICE FOR
AN 80-10 METER VERTICAL
. if you can use only $1 / 3$ of it on $10 ?$
or only $1 / 2$ of it on 20?
or only $3 / 4$ of it on 40?

Only Butternut's new HF5V-III lets you use the entire 26 -foot radiator on $80,40,20$ and 10 meters (plus a full unloaded quar-ter-wavelength on 15) for higher radiation resistance, better efficiency and greater VSWR bandwidth than conventional multi-trap designs of comparable size. The HF5V-III uses only two high-O L-C circuits (not trapsl) and one practically lossless linear decoupler for completely automatic and low VSWR resonance (typically below 1.5:1) on 80 through 10 meters, inclusive. For further information, including complete specifications on the HF5VIII and other Butternut antenna products, ask for our latest free catalog. If you've already "gone vertical," ask for one anyway. There's a lot of information about vertical antennas in general, ground and radial systems. plus helpful tips on installing verticals on rooftops, on mobile homes, etc.

P.O. Box \#1411

San Marcos, Texas 78666
Phone: (512) 396-4111

ATLAS DD6-C and 350XL Digital Dial/Frequency Count ers. $\$ 175.00$ plus $\$ 3.00$ UPS. AFCI Stop VFO drift. See June 79 HR, $\$ 65.00$ plus $\$ 3.00$ UPS. Mical Devices, P. O. Box 343 , Vista, CA 92083.

MIDLAND $13-510$ synthesized 2M FM 'xcvr., $\$ 239.00$ with accessories and manual. CES 800ML scanner with manual, $\$ 55.00$. W7TZO, Ray Schall, 1850 Olive Barber Rd., Coos Bay, OR 97420. (503) 267-6064.
WANTED: Help in completing the largest collection of Hallicratter equipment in the world. Urgently needed are receivers with aluminum colored panels, back lighted plastic dials with "airplane" hands, early transmitters, unusual accessories, etc. Chuck Dachis, WD5EOG, "The Hallicrafter Collector," 4500 Russell Drive, Austin, Texas 78745.

DIRECT CONVERSION RECEIVER KITS. Write Direct Conversion Technique, Box 1001, Dept. 4FM, 535 No. Michigan Ave., Chicago, Illinois 60611.

WANTED: Junction box JB-29A from 522 for my collection. Weaver, W5PMX, 12404 Roadrunner, El Paso, TX 79934.

WANTED: Cushman Communications Service Monitors, working or non-working units. Also need plug-in modules, manuals, parts, etc., will pay cash or take over payments. Also need RF voltmeters; WB8IJX, Fred L. Slaughter, 5844 Grisell Road, Oregon, OH 43618. Phone (419) 698-8597.

COLLECTORS - Operating Central Electronics 200V. Make offer. W9FL - (815) 399-3537.

ELECTRONIC BARGAINS, CLOSEOUTS, SURPLUS! Parts, equipment, stereo, industrial, educational. Amazing valuess! Fascinating items unavailable in stores or catalogs anywhere. Unusual FREE catalog. ETCO-012, Box 762, Plattsburgh, NY 12901. SURPLUS WANTED.
YAESU 901DM, mint condition, $\$ 999.00$. Call upstate NY, (607) 669-4521, WA3EFE,

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.
FOR SALE: NLS MS-15 miniscope - $\$ 200.00$. New Mirage B1016 - $\$ 200.00$. New Kenwood TR-7800 $\$ 300.00$. Motorola belt clip - $\$ 7.00$. Looking for Motorola MX handie-talkie and/or accessories. Charlie, (212) 268-2654.

ETCH IT YOURSELF PRINTED CIRCUIT KIT, Photo-Positive Method - No darkroom required, All the supplies for making your own boards, direct from magazine article in less than 2 hours. Only $\$ 24.95$, S.A.S.E. for details: Excel Circuits Co., 4412 Fernlee, Royal Oak, MI 48073.

WANTED: Burnell straight telegraph key with closing switch. Lee V. McKinnis, Jr., K9EY, P.O. Box 1225, Bloomington, IN 47402.
GLOSSY OSLS. Distinctive! 100-\$9; 200-\$13. Stamp brings samples. A. Zanella, 730 Baker Street, San Francisco, CA 94115.

CB TO 10 METER PROFESSIONALS: Your rig or buy ours - AM/SSB/CW. Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412; (616) 924-4561.

PICTURE QSLS - quality photo and standard cards. Free samples and information. Planet Publishing, P.O. Box B, Martinsville, IL 62442.

QSL'S: No stock designs! Your art or ours; photos, originals, 50 c for samples \& details (refundable). Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412.
WORLD PRESS RADIOTELETYPE station lists. Over 50 different worldwide press services contained in 3 lists. By time, by frequencies and ITU combination list. All transmitting in English. 24 hours. Hundreds of confidential and fascinating RTTY news stations in these up to date lists. Utilize your present equipment. Book with lists. $\$ 5.00$ postpaid: Universal Electronics, 1280 Aida Drive, Reynoldsburg. Ohio 43068.

NEED HELP for your Novice or General ticket? Recorded audio-visual theory instruction. No electronic background required. Free information. Amateur License, P.O. Box 6015, Norfolk, VA 23508.
"GENERAL COVERAGE" Synthesized Receiver! Incredible JRC NRD-515! Covers $10 \mathrm{kHz} \cdot 30 \mathrm{MHz}$, four selectivity positions available, ($6 \mathrm{kHz}, 2.3 \mathrm{kHz}$ supplied) optional 24 channel memory, pass band tuning, no dial backlash, exceptional SSB stability, all solid state, lab grade equipment. Receiver $\$ 1350.00$, Memory $\$ 230.00$. Optional Speaker $\$ 40.00$. Spec. sheet, catalog tree! Radio West, 2015 S. Escondido Blvd., Escondido, CA 92025, 714.741-2891. Visa/MC.

ARRL ATLANTIC DIVISION \& NY STATE CONVENTION combined with
Rchester
HAMFEST
Bigger than ever
MAY 15-16
Better than ever
Monroe County Fairgrounds and Marriott Inm,
near NY Thruway exit 46
For information write: Hamfest, Box 1388,
Rochester, NY 14603
Phone: 716-424-1100

Ham Radio SUBSCRIPTION PRICES GOING UP

June 1, 1981
See page 84

MADISON FhECTRONICS'

NEW TOLL-FREE

Night-Time Order Line
1-800-231-3057 6-10 PM CST M.W.F Day Phone 713-658-0268

2m AMPLIFIER

35w 2 m FM AMPLIFIER KIT • MODEL $335 \cdot \mathrm{~K}$ - $3 \mathrm{IN} \cdot 35$ OUT • $2 \mathbb{I N} \cdot 30$ OUT • $1 \mathrm{IN} \cdot 15$ OUT - COR - CLASS C - 4.5 A AT 13.6VDC

- BNC CONNECTORS

ASK ABOUT OUR OTHER VHF \& UHF MODELS

Communication Concepts Inc.

2648 NORTH ARAGON AVE. DAYTON, OHIO 45420 (513) 296-1411

Get your TEN-TEC

 'money-back guarantee' transceiver from AESCALL TOLL FREE 1-800-558-0411 In WI (outside Milwaukee metro) 1-800-242-5195
AMATEUR ELECTRONIC SUPPLY:
4828 W. Fond du Lac Avenue Milwaukee, WI 53216 (414) 442-4200 - AES BRANCH STORES-

Wickliffe, OH 44092: 28940 Euclid Ave. (216) 585-7388; OH Wats 1-800-362-0290 Orlando, FL 32803; 621 Commonwealth Ave (305) 894-3238; FL Wats 1-800-432-9424 Las Vegas, NV 89106; 1072 N. Rancho Dr (702) 647-3114: Outside NV 1-800-634-6227

Isotron antennas need no radials or matching devices. Feed with 50 n coax. For indoor or outdoor mounting. Excellent for with 50 n coax.
all amateur uses.
\bar{Z} BILALCOMPANY
staar route (303) 687-3219

SYNTHESIZED
SIGNAL GENERATOR
man
mand

- Covers 100 to 179.999 MHz in 1 kHz steps with thumb-wheel dial - Accuracy $.00001 \%$ at all frequencies - Internal frequency modulation from 0 to over 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB below carrier • RF output adjustable from $5 \cdot 500 \mathrm{mV}$ across 50 ohms - Operates on 12 vdc @ $1 / 2 \mathrm{amp} \bullet$ Price $\$ 329.95$ plus shipping.

In stock for immediate shipping. Overnight delivery available at extra cost. Phone: (212) 468-2720.

CB TO 10-METER CONVERSIONS. SSB/AM/CW. Let a specialist convert your rig, or buy one complete. Write Conversion Engineering, Box 183, Sandwich. Massachusetts 02563.

HEATHKIT HW- 101 with power supply. $\$ 300.00$ plus UPS shipping. Andy, N6BDF, 441 Lynbrook, Pacifica, CA 94044.

MAKE HAM RADIO FUNI Supplement your learning programs with a motivational hypnosis cassette. Tape \#3, Learning the Code; Tape \#4, Breaking the Speed Barrier; Tape \#7, Electronics Theory. Free catalog. For tapes send $\$ 10.95$ to John Wolf Hypnosis Center, P.O. Box 497. Hayden, Idaho 83835.

PERFECT CONDITION! Bishop $10-80$ meter 100 watt mobile linear amplifier. Unused, still in original carton. I paid $\$ 225.00$, no reasonable offer refused. Make offers to: Pat Everdell, WB7UUM, 117 Cowlitz Dr., Kelso, Washington 98626. (206) 577-0341.

HAMS FOR CHRIST - Reach other Hams with a Gospel Tract sure to please. Clyde Stanfield, WA6HEG, 1570 N . Albright, Upland, CA 91786.
SELL: Novice station; includes Heathkit 1680 Receiver, Heathkit 1681 Transmitter, Power supply, Ameco preamp, MFJ CW filter. Heathkit Speaker, NYE key, Ten-Tec tuner, and Hustler 5 band vertical all for $\$ 635$ (shipping paid). Write: KA4AIY, 8217 Holly Berry Ct., Raleigh, NC 27609.

DISTINCTIVE QSL's - Largest selection, lowest prices, top quality photo and completely customized cards. Make your QSL's truly unique at the same cost as a standard card, and get a better return rate! Free samples, catalogue. Stamps appreciated. Stu Goodman, K2RPZ Print, P.O. Box 412, Rocky Point, NY 11778 (516) 744.6260.

WANTED: spare pair of Eimac 8875's. Send price and condition info to Lee Crocker, W9OY, 2901 Willowpark, Champaign, IL 61820.

FREE SAMPLE Ham Radio Insider Newsletter! Send large S.A.S.E. W5YI, Box \#10101-H, Dallas, Texas 75207.

WISH TO TRADE perfect Kenwood T-599-A transmitter for similar T-599-D for station matching. Davis WOPCW, 316-835-2094.

MAGAZINE SAMPLES! For a free list of over 135 magazines offeringa sample copy, send a stamped, addressed envelope to: Publisher's Exchange, P.O. Box 1368, Dept. 26A, Plainfield, NJ 07061.

KEYER PADDLES, iambic, more features, better action. Kits available. $\$ 15.00$ up. Write Earl Snyder, 213 W. Davis, Sapulpa, OK 74066.

CODE got you stumped?

RELAX and worry not! Learn international Morse Code the EASY, Rus Farnsworth way. No books, no gimmicks, just listen \& learn. Using the word method, based on modern psychological techniques, you can zoom past 13 w.p.m. in less than half the time! Available in cassettes @ \$10.95 and LP records at $\$ 9.95$ - you get over two hours of instruction!

EPSILON RECORDS P.O. Box 626
 San Jacinto, CA 92383

STOP LOOKING for a good deal on amateur radio equipment - you've found it here - at your amateur radio headquarters in the heart of the midwest. Now more than ever where you buy is as important as what you buy! We are factory-authorized dealers for Kenwood, Drake, Yaesu, Collins, Wilson, Ten-Tec, ICOM, DenTron, Hewlett-Packard Calculators, MFJ, Tempo, Regency, HyGain, Mosley, CushCraft, Swan and many more. Write or call us today for our low quote and try our personal and friendly Hoosier Service. HOOSIER ELECTRONICS, P.O. Box 3300, "9 Meadows Center, Terre Haute, Indiana 47803. (812) 238-1456.

2 MizIER

 TI:HBSCOPING ANIENDA with BNC- USE ON ANY 2 METER

HAND-HELD RADIO
WITH A BNC
CONNECTOR SUCH AS KENWOOD WILSON YEASU MANY OTHERS

- 3dB GAIN OR BETTER

OVER ANY RUBBER DUCKIE

- $191 / 2^{\prime \prime}$ EXTENDED 31/4"CLOSED

TRIONYX INDUSTRIES 6219 COFFMAN ROAD INDIANAPOUS, IND. 46268 317-291-7280

MASTER CEARGE/VISA - ACCEFTED
DEALER PRICING UPON REQUEST WE CAN PUT ANY TYPE OF CONNECTOR ON THE ANTENNA WRITE FOR PRICE AND AVAILABIITTY.

Coming Events ACTIVITIES

"Places to go..."

CALIFORNIA: Santa Maria Amateur Radio Swapfest, June 14, 1981. Sponsored by the Sateliite Amateur Radio Club. For info on prizes, swaptables, dinner tickets and much more, mail inquiries to: Santa Maria Swaptest, 1600 E. Clark \#49, Santa Maria, CA 93455.

ILLINOIS: Radio Expo '81 sponsored by the Chicago FM Club will be held, rain or shine, on September 19th and 20th at the Lake County Fair Grounds, routes 45 and 120 in Grayslake. Grayslake is 30 minutes north of Chicago and 45 minutes south of Milwaukee. This year we will have a super large flea market with plenty of indoor and outdoor space, free with a gate ticket. Just bring your own table and chair or tailgate it. Parking is free. We will also have new camping sites complete with power hookups. There will be Ham seminars both Saturday and Sunday. YL's have a ladies program and door prizes both days. Only the best manufacturers of Ham and computer equipment and their distributors will be at our huge display building for you to meet and buy from. As in the past, Expo will be giving out thousands of dollars worth of prizes and admission tickets are good for both days. For advanced registration, send $\$ 3.00$ per person and a \#10 S.A.S.E. to Radio Expo Tickets, P.O. Box 1532, Evanston, Illinois. Tickets at the gate are $\$ 4.00$ each. Kids under seven are free. For more information call (312) BST-EXPO. Talk-in on 146.161.76, 146.52, and 222.5/224.10

OHIO: The 12th annual $\mathrm{B}^{*} \mathrm{~A}^{*} \mathrm{~S}^{*} \mathrm{H}$ will be held on the Friday night of the Dayton Hamvention. April 24th at the Convention Center, Main and Fitth Streets. Admission is free. Food and C.O.D. bar. Live entertainment, super awards, and more. More info: Miami Valley FM Association, P.O. Box 263, Dayton, Ohio 45401.

OHIO: The Athens County A.R.A.'s annual Hamfest on May 17th at the Athens City Recreation Center, East State St. Talk-in on 34/.94. More info S.A.S.E. to: A.C.A.R.A., clo Jeff White, WD80XX, P.O. Box 767, Athens, Ohio 45701 or telephone Joe Folirod, WB8DOD (614) 797-4874.

ILLINOIS: 20th annual Moultrie A.R.K. hamfest on May 3rd at the Moultrie County 4 -H center Fairgrounds. Talkin on 146.94 and $146.055 / 655$. Write to M.A.R.K., P.O. Box 327, Mattoon, Illinois 61938.

INDIANA: The Wabash County A.R.C.'s 13th annual Hamfest on May 17th at the Wabash County 4.H Fairgrounds, Wabash. Talk-in on 7.63/.03 or .52 simplex. More info: S.A.S.E. to Dave Spangler, 45 Grant St., Wabash, Indiana 46992.

MASSACHUSETTS: South Shore Repeater Association's 5 th annual auction on April 11th at the Central Junior High School, Broad St., Weymouth. Talk-in on 147.90/.30 machine. More info: S.A.S.E. to S.S.R.A., Town Hall Annex, 402 Essex St., Weymouth, Massachusetts 02188.

MASSACHUSETTS: Framingham Amateur Radio Association's annual Spring Flea Market on April 12th at the Framingham Police Station drill shed. Talk-in on $.75 / .15$ and .52. More info: Ron Egalka, K1YHM, 3 Driscoll Dr., Framingham, Massachusetts 01701. (617) 877-4520.
MASSACHUSETTS: The Wellesley Amateur Radio Society's annual auction on April 18th at the Wellesley High School cateteria on Rice St., Wellesley. Talk-in on $.60 \% .03, .041 .64$, and .52. Contact: Kevin P. Kelly, WA1YHV, 7 Lawnwood P1., Charlestown, Massachusetts 02129.

MASSACHUSETTS: The Middlesex Amateur Radio Club's first annual indoor flea market on April 26th at the Wayland High School Commons Building in Wayland. Talk-in on $147.96 / .36$ and 146.52 direct. Advanced reservations ($\$ 6.00$) to Irving Geller, WA1CDW, Apt. 8422A, 1450 Worcester Rd., Framingham, Massachusetts 01701.
MINNESOTA: The North Area Repeater Association's swaplest and exposition for radio amateurs and computer hobbyists on May 30th at the Minnesota State Fairgrounds in St. Paul. Talk-in on .161.76 and .52. More info: Amateur Fair, P.O. Box 30054, St. Paul, Minnesota 55175.

MISSOURI: The P.H.D. Radio Association's 12 th annual Northwest Missouri Hamfest and Missouri State ARRL convention on April 11th and 12th at the Kansas City Trade Mart. More info: PHD Amateur Radio Association, Inc., P.O. Box 11, Liberty, MO 64068. (816) 453-4774 or 452.9321.

MISSOURI: Indian Foothills A.R.C. 6 th annual Hamtest on May 17th at the Saline County Fairgrounds building in Marshall, Missouri. More info: Phyllis French, WOWIE, Route 4, Box 168, Sedalia, Missouri 65301. (816) 826-8319 after 5 P.M. or K0BVB at (816) 886-2837.

NEWEST EDITION-ONE-STOP SHOPPING FOR SWLS \bullet RECEIVERS • CONVERTERS • ANTENNAS - PRESELECTORS - CLOCKS - FILTERS - HEADPHONES •HANDBOOKS •LISTS

GILFER SHORTWAVE
Dept. HR.4, Box 239, Park Ridge NJ O7765

COMMUNICATIONS TECHNICIAN

in Vermont

Primary duties involve installation, maintenance and repair of microwave system and associated end devices: to include telephone and telemeter interfaces. Also includes meter testing, maintenance of emergency 2 -way radios, and some mechanical work on motor generators
Requirements: Associate engineering degree or equivalent with background in microwave and solid state electronics. Valid second class FCC license or ability to acquire same in reasonable length of time
Send resume to:
E. T. Congdon

Vermont Electric Power Company, Inc.
P.O. Box 548

Rutiand, Vermont 05701
"An Equal Opportunity Employer

AZDEN onlv ${ }^{5} 315^{50}$ FryET
 - Azden PCS 3000 (2 meter FM)

- Set of memory batteries $\$ 7.50$

Order 24 hours a day (215) 884-6010 FREE UPS N.P.S. Inc. WA3IFO 1138 BOXWOOD RD., JENKINTOWN, PA. 19046

VHF COMMUNICATIONS

is a quarterly radio amateur magazine specializing in VHF, UHF, and microwaves. An introductory annual subscription is $\$ 15.00$. USA representative

SELECTO Inc.

372 D Bel Marin Keys Blvd., Novato, CA 94947
Phone: (415) 883-2478 Telex: 171-046

NEW
 LICENSE MANUAL
 See page 111 For Order
 Information

ALUMA TOWER COMPANY BOX 2806HR

VERO BEACH, FLA. 32960 (305) 567-3423 TELEX 80-3405

COLORADO: The Rocky Mountain VHF Society's annual spring hamfest on May 17th at the Boulder National Guard armory, 4750 North Broadway. Talk-in on 146.16/.76 and 146.52. More info: Richard Ferguson, KA0DXM, 1150 Albion Rd., Boulder, Colorado 80303. (303) 499-2871.

CONNECTICUT: Fourth annual P.V.R.A. Flea Market on May 3 rd at the George Penny High School in East Hartford, Connecticut. More info: Arnie, K1NFE, P.O. Drawer M, Plainville, Connecticut 06062.

FLORIDA: Annual "Conchfest" on May 16th and 17th featuring Conch Chowder, Conch Fritters, and a Conch Shell blowing contest. Tickets: $\$ 25.00$ person and $\$ 15.00$ for harmonics under twelve. Special rate at Sportsmen's Inn. More info: Key West A.R.C., P.O. Box 2371, Key West, Florida 33040.

ILLINOIS: The Rock River A.A.C.'s 15 th annual hamfest on April 26th at the Lee County 4-H Center near Amboy. Talk-in, Dixon repeater . 371.97 simplex. More info: Chuck Randall, W9LDU, 1414 Ann Ave., Dixon, Illinois 61021. (815) 284-6380.

NEW ENGLAND: The Hosstraders will hold their Eighth Annual Tailgate Swaplest, Saturday, May 9, at the Deerfield, New Hampshire. Fairgrounds. Admission: one dollar, includes tailgating and commercial dealers. Profits benefit Boston Burns Unit of Shriners' Hospital for Crippled Children. Last year we donated \$2058.16. Talkin 52 and 146.40-147.00. Questions about New England's biggest flea market? SASE to Joe K1RQG, Star Route, Box 56, Bucksport, ME 04416, or Norm WA1IVB, RFD, Box 28, West Baldwin, ME 04091 or Bob W1GWU, Walton Rd., Seabrook, NH 03874.
NEW JERSEY: The 6th Trenton Computer Festival at Trenton State College, Trenton on April 25 th and 26 th. More info: TCF-81. Trenton State College, Hillwood Lakes, P.O. Box 940, Trenton, NJ 08625. (609) 771-2487.

NEW JERSEY: The DeVry Technical Institute WA2MDT A.R.C.'s 5 th annual Amateur Radio and Computer Fleamarket on May 2nd at the DeVry Technical Institute, 479 Green St., Woodbridge, NJ. Talk-in on 146.52. More info call: Frank Koempel, WB2JKU, 634-3460 or Steve Hajducek, KA2IFX, 727-5962.

NEW YORK: The Southern Tier A.R.C.'s Hamfest on May 2nd on Route 17C, east of Owego. Talk-in on . 16/.76 and 52. More info: D.R. Vasilow, W2EWO. Star Route 1. Box 35, Owego, NY 13827. (607) 687-1515.
NORTH CAROLINA: The Raleigh Amateur Radio Society's 9th annual Hamfest on April 12th at the Crabtree Valley Mall, U.S. 70 West, Raleigh. Talk-in (Saturday and Sunday) on $146.04 / .64$ and $146.28 / .88$. More info: R.A.R.S. Hamfest, P.O. Box 17124, Raleigh, NC 27619.
PENNSYLVANIA: Seventh Annual Northwestern Pennsylvania Hamfest, May 2, 1981, Crawford County Fairgrounds, Meadville, PA. Gates open 8 AM. Bring your own tables. $\$ 5$ per table to display inside, $\$ 2$ per car space outside. $\$ 3$ admission, children under 12 free. Refreshments. Commercial displays welcome. Talk-in 04/64, 81/21, 63/03. Details C.A.R.S., P.O. Box 653, Meadville, PA 16335. Attn: Hamfest Committee.

PENNSYLVANIA: The Warminster A.R.C.'s 7th annual Ham Mart on May 3rd at the Middletown Grange Fairgrounds, Penns Park Rd., Penns Park. Talk-in on 146.52 simplex or W.A.R.C. repeater - 147.69/.09. More info: W.A.R.C., P.O. Box 113, Warminster, Pennsylvania or call Mark Hinkel, WA3QVU, (215) 657-7295.

SOUTH CAROLINA: The Blue Ridge A.R.S.'s annual hamfest on May 2nd and 3rd at the American Legion Fairgrounds, Highway 25 bypass in Greenville. More info S.A.S.E. to: B.R.A.A.S., 200 Walker Sp. Rd., Taylors, SC 29687.

TENNESSEE: The first Tri-Cities Hamfest on May 2nd and 3 rd at the Appalachian Fairgrounds in Gray. Sponsored by the Bristol, Johnson City, and Kingsport A.R.C.s. More info: Tri-Cities Hamfest, P.O. Box 3682 CRS, Johnson City, Tennessee 37601.
WASHINGTON:The Inland Empire Swaplest on April 25th at the Spokane Interstate Fairgrounds' Fioral Building in Spokane. Talk-in on 146.34/.94 and 146.52 simplex. More info S.A.S.E. to: Swap Fest, clo Jan Thieman, KA7DUU, 7803 E. Mission, Spokane, Washington 99206.
WISCONSIN: The Ozaukee Radio Club's annual indoor swaplest on May 9th at the Cedarburg Community Center Gym on Washington Ave., 22 miles north of Milwaukee. Talk-in on 146.37/.97 and 146.52. More info S.A.S.E. to: Ozaukee Radio Club, P.O. Box 13, Port Wash. ington, Wisconsin 53074.

WISCONSIN: Green Bay Mike and Key Club's swaptest on May 17th at the Ashwaubenon Recreation Center, Anderson Dr. Talk-in on $147.72 / 12$ and 146.52. More info: Swaplest Chairman, Robert Duescher, 1011 13th Ave., Green Bay, Wisconsin 54304.

IF WE WERE YOU

MODEL 6154 TERMALINE B)

I'D BUY FROM US

YOUR INQUIRY OR ORDER WILL GET OUR PROMPT ATTENTION authomize תinil oisteveror

associates
115 BELLARMINE
ROCHESTER, MI 48063
CALL TOLL FREE
$: 00-523=2935$
IN MICHIGAN $313-375-0420$

OPERATING EVENTS

APRIL 24th - 26th: Special event station W8BI will operate from the Dayton A.R.A.'s communications van during the Dayton Hamvention. Certificates available, S.A.S.E. (large) to anyone contacting W8BI. Send QSL to W8BI, P.O. Box 44, Dayton, Ohio 45401. Frequencies: 14.295, 7.230, and 7.125 (CW). Times: 24th: 1800-2200 UTC; 25 th: 1400-2200 UTC; and 26th: 1400-1800 UTC.

APRIL 24th - 26th: The St. Cloud MN ARC, in association with the city of St. Cloud, will issue a certificate to all amateurs who contact our special event station WOSV. Suggested trequencies $3.915,14.305,21.385$, and 28.620 MHz . On phone listen for CQ St. Cloud 125th Birthday. Send your QSL with S.A.S.E. to George Frederickson, KC0T, R.R. 2, Box 352, South Haven, MN 55382.

MAY 2nd AND 3rd: The L'Anse Creuse A.R.C. of Mount Clemens, Michigan will operate from the Mount Clemens Train Depot from 1400 UTC May 2nd to 2000 UTC May 3rd. Boyhood home of Thomas Edison. Operation will be 14 kHz from the bottom of the General phone bands, 40 kHz from the bottom of the General CW bands and 15 kHz from the top of the Novice bands using the call sign W8LC. Special $81 / 2 \times 11$ QSL certificates will be available to all stations worked. QSL with a size 10 or larger S.A.S.E. to L'Anse A.R.C., W8LC, P.O. Box 72, Utica, Michigan 48087.

MAY 6th AND 7th: The New York State QSO party from 1700 UTC on May 6th to 0500 UTC on May 7th and from 1200 UTC to 2359 UTC May 7th. Once on phone and once on CW. Signal report, serial number and New York county, state, providence or country. Phone: 3900, 7275, 14285, 21375, 28550. CW: 1810, 3560, 7060, 14060, 21060, 28060. Novice: $3725,7125,21125,21825$. Logs by June 16th. Send logs to: Mike Bucklaew, KA2KQP, 831 Dodge Rd., Getzville, NY 14068. Results S.A.S.E.

MAY 9th: Help us celebrate the Rogers, Arkansas Centennial Year on Saturday, May 9 th, 1981 by working one of the Otficial Centennial Amateur Radio Stations. K5BP call letters will be used about $7,283 \mathrm{kHz}$ LSB or 21,363 kHz USB from 1400 UTC to 2200 UTC. Send confirming QSL card with a \#10 large S.A.S.E. to K5BP, Dept. 1881. Gen. Del., Rogers, Arkansas 72756 to receive an Official Centennial Certificate.

CENTURY 21 ARC - Low power - QRP'ers - CW nets - Contests - Awards - SASE KA4EBW.

NEW FROM GLB

 A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from \$69.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from \$29.95.SYNTHESIZER KITS from 50 to 450 MHz . Prices start at $\$ 119.95$.
Now available in KIT FORM GLB Model 200 MINI-SIZER.
Fits any HT. Only 3.5 mA current drain. Kit price $\$ 159.95$ Wired and tested. \$239.95
Send for FREE 16 page catalog.
We welcome Mastercharge or VISA

CLBELECTRONICS
 1952 Clinton St., Buffalo, N. Y. 14206

Transmits perfect Morse Code * Built-in 16. character buffer * Internal speaker and sidetone * Reed relay output eliminates keying problems * All solid state circuits and sockets for reliability * Speed range 5-45 WPM * Perfect companion to our MORSE-A-WORD CW code reader.
MORSE-A-KEYER KIT, model MAK-K, Complete kit of parts \& manual
$\$ 159.95$
MORSE-A-KEYER KIT, model MAK-K, Complete kit of pa
MORSE-A-KEYER, model MAK-F, Factory wired \& tested
$\$ 205.00$
MORSE-A-KEYER ESSENTIAL PARTS KIT, mơdel EPK-K, \$ 69.95
(Essential parts kit for home-brewers consists of pc board, board parts and manual.
You supply ASCII keyboard, cabinet, power supply \& miscellaneous parts.)

- Send check or money order. Use your VISA or MasterCard. Add $\$ 5.00$ shipping and handling for Continental U.S. Wisconsin residents add 4% Wisconsin State Sales Tax.

Micracraft
Corporation Telephone: (414) 241 -8144
Post Office Box 513HR, Thiensville, Wisconsin 53092

ALL BAND TRAP ANIENNAS!

PRETUNED - COMPLETELY ASSEMBLED ONLY ONE NEAT SMALL ANTENNA FOR UP TO 7 BANDS GESTED HOUSING AREAS. APARTMENTS LIGHT - STRONG - ALMOST INVISIBLE!

FOR ALL MAKES \& MODELS OF AMATEUR TRANSCEIVERS TRANSMITTERS GUARANTEED FOR 2000 WATTS SSB 1000 WATTS CW. NPUT FOR NOVICE AND ALL CLASS AMATEURS!

COMPLETE AS SHOWN with 90 ft . RG58U-52 ohm reedline, and PL 259 connector, insulators, 30 ft 300 lb , test dacron end supports, center connector with built in lightning arrester and static discharge molded, sealed, weatherproof, resonant traps $1^{\prime \prime} \times 6^{\prime \prime}$-you just switch to band desired for excellent worldwide moideration - transmitting and recieving! Low SWR over all bands - Tuners usually NOT NEEDED! Can be used as inverted V's - slopers - in attics, on building tops or narrow lots. The ONLY ANTENNA YOU WILL EVER NEED FOR ALL DESIRED BANDS - WITH ANY TRANSCEIVER - NEW - EXCLUSIVEI NO BALUNS NEEDED! 80-40-20-15-10-6 meter-2 trap w-. 104 ft. with 90 ft . RG58U -connector-Model 998BUA ... \$79.95 $40-20-15-10$ meter ... 2 trap $\ldots-54 \mathrm{ft}$, with 90 ft . RG58U - connector - Model 1001BUA \$78.95 20-15-10 meter ... 2 trap ... 26ft, with 90 ft . RG58U - connector - Model 1007BUA... \$77.95 SEND FULI PRICE FOR POSTPAID INSURED DEL IN USA. (Canada is $\$ 5.00$ extra for postage - clerical SEND FULL PRICE FOR VISTPAID MASTER CHARGE - CARD - AMER. EXPRESS Give number and ex customs etc.) or order using Vh $1-308-236-5333$ 9AM - 6PM week days. We ship in $2-3$ days. ALL PRICES WILL INCREASE date. Ph 1-308-2 6 - 3 . SAVE - ORDER NOW! All antennas guaranteed FROM
Made in TERN ELECTRONICS Kept. AR-4 Kearney, Nebraska, 68847

MICROWAVE TELEVISION

The RP series of complete 2350 MHz downconverter packages for amateur teievision connect to any standard television set and provide all you need for microwave television viewing

 The standard RP package contains a microstrip converter mounted in a wicely used cavity-type microwave antenna The antenna includes a 30° disc-rod assembly thal increases the overall system converchannels is included along with all anterna mounting hardware and instructions.With this package. you are ready for amateur television. Just aim the antenna. connect one 750 coaxial line from the antenna to the power supply and a second coaxial line from the power supply to your fv. and you ate on the air
For instailations greater than 15 miles, the RP + package, which uses a higher gain RF stage in the converter, is recommended Beyond 25 mies, or for installations where a separate antenna is availabie, the RPC package is available in this package, the converter is mounted in a separate weatherproot case and is provided with a 50Ω input impedance N connector
All models use a downconverter built using microstrip construction for long reliable operation the downconverter contains a low noise preamplifier, a balanced mixet, a trimmed local oscillator, and a broadband output amplifier matched to 75 ohms

Prices including UPS shupment are as follows
Model RP receiver package
$\$ 175$
Model RP + receiver package $\mathbf{\$ 2 0 0}$
Model RPC receiver package

K. \& S. Enterprises
P.O. Box 741, Mansfield, MA 02048

R-4C+SHERWOOD

STILL THE FINEST COMBINATION 600 HZ LOW LOSS Tst-IF CW FILTER. Improve eariy stage selectivity Eliminate fugh pitched leakage around 2nd If siters
improve witimate rejection to 140 dB . Eliminate strong signals overioading 2nd mixer, causing intermod and desensitization
 16.POLE R 4C SSB! Optimum bandwidt plug in titer Unex celled skirt selectivity Low los
at 60 dE. CF $2 \mathrm{~K} / 16$ \$ $\$ 135.00$
250 AND 500 HZ 8 POLE 2nd IF PLUG IN FILTERS. CF 250/8, CF-500/8 $\$ 80.00$
Ist IF SSB FILTERS still availatie CF $2 \mathrm{~K} / \mathrm{B}: \$ 150.00$ pair SPECIAL AM FILTERS and switching kits availatile.
Filters alio availatile for R), TR.7. TR. 4, 5-gnaliOne, Atlas Add $\$ 3$ thipping per order. $\$ 6$ overseas air
Europeans: Plesse contact ingoimper, Postfach 24 49, D-8070,
Sherwood Engineering Inc.
1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257

RED HOT SPECIALS

AZDEN PCS-3000, 2 meters ICOM 260A, All Mode, 2 m . KANTRONICS CODE READER SANTEC HT 1200 HANDHELD ICOM 2 KL , Linear Amp. ICOM IC 255A, 2 meters SWAN ASTRO 150, New Style. ICOM IC251A, 2 m All Mode JANEL QSA 5, 2 m Pre Amp ICOM IC2A HANDHELD w Nicad with Touch Tone Pad
ICOM 551, 6 meters. ALL MFJ PRODUCTS

Prices subject to change without notice Write for our Large Specials and Used Equipment Lists
BEN FRANKLIN ELECTRONICS
$1151 / 2$ N. Main Hillsboro, KS 67063 316-947-2269
315.00 425.00 360.00
315.00 315.00
1599.00 1599.00
315.00 315.00
750.00 615.00 . 36.50 215.00 235.00 408.00 2% off List

BEAT YOUR BATTERIES!

OPERATE Your SYNTHESIZED HT CONTINUOUSLY from any 12-30v D.C. Source: Auto. Truck, RV, Light Aircraft
$(12$ or 28 v systen). Home 0 . C. Power, Supply 111 STEWART's New"BATTERY-BEATER"provides the proper STEWART's New "BATTERY-BEATER"provides the proper current for CONTIMOOUS FULI POWER TRANSMITI A1 day travel, all evening Simplex Net with NO QRT TO RE-CHARGE! TRANSMIT EVEN HITH DEAD NACAds ! ! ! ! - NOI a battery charger but a FULL POWER SOURCE with Fused Circuit to protect your rig!

- RUGGED ALUMINUM CASE (except ICOM unit is built into IC-BP4 case for slide on/slide off power supply change!)
-YOUR NiCads REMAIN IN PLACE (except ICOM). Simply unplug for INSTANT PORTABILITYI
-DESIGNED by an engineer from NASA's Jet Propulsion Laboratory with components rated 505 beyond requirements!
- PRE-WIRED JACK for your radio (except ICOM) and - detailed installat ion instructions supplied! -5 FT . Power Cord (4 FT . on 1 COM). VELCRO pads supplied to mount anywhere! I FULL YEAR WARRANTY!! -NO INTERFERENCE with PL's! LONGER LIFE FOR NICads! - NOW AVAILABLE for TEMPO S-1,2,5; KENNOOD TR-2400; YAESU FT-207R; ICOM IC-2A/T; WILSON MK II, MK IV:
SANTEC HT-12001 (MEMORY RIGS RETAIN MEMORYII) SANTEC HT-12001 (MEMORY RIGS RETAIN MEMORYII) $\$ 1.80$ Tax C 0 . s You pay Postage and COD fees -PHONE: 1-213-357-7875 Collect for C. 0 f ees STEWART OUADS P.O. BOx 2335 IPWINDNE, CA. 9176

SSWICHMDUTHIS SURJUS

2822 North 32nd Street, \#1 • Phoenix, Arizona 85008 • Phone 602-956-9423

MEMORY		
	Description	Price
2708	$1 \mathrm{k} \times 8 \mathrm{Eprom}$	\$ 3.00
2716/2516	$2 \mathrm{k} \times 85 \mathrm{~V}$ single supply	7.50
2114/9114	$1 \mathrm{k} \times 4$ Static	3.00
4027	$4 \mathrm{~K} \times 1$ Dynamic Ram	1.00
2117/4116	$16 \mathrm{~K} \times 1$ Dynamic Ram	3.00
2732-6	32k Eprom	39.95
C.P.U.'S, Etc.		
HC6300P	Microprocessor	9.99
MC68B21P	PIA	6.99
MC6845P	CRT Controller	25.00
MC6850P	ACIA	4.99
MC6352P	SSDA	5.00
8008-1	Microprocessor	5.00
8080A	Microprocessor	5.00
Z80A	Microprocessor	10.99
280	Microprocessor	3.99
Z80A	P10	9.99
280	S $10 / 0$	22.50
280	S10/1	22.50
8212	8 Bit input/output part	3.99
8251	Communication Interface	6.99
TR1602/AY5-1013	3 UART	6.99
TMS 1000NL	Four Bit Microprocessor	4.99
PTI482E	PSAT	5.99
8257	dma Controller	8.99
3341	64×4 FIFO	3.00
MM5316/F3817	Clock with alarm	5.99
3741 60.00		
8743	8 Bit Microcomputer with programmable/erasable EPROM	60.00
MC 1408L/6	$6 \mathrm{Bit} \mathrm{D/A}$	3.25
COM2502		9.99
COM2601		2.99

CRYSTAL FILTERS
ryco 001-19830 Same as 2194F
10.7 MHz narrow band

3 dB bandwidth 15 kHz min.
20 dB bandwidth 60 kHz min.
40 dB bandwidth 150 KHz min .
Ultimate 50 dB insertion loss 1 dB max.
Ripple 1 dB max. Ct. $0 \cdot /-5 \mathrm{pf} 3600$ Ohms
$\$ 3.99$ each
MRF454 Same as MRF 458 $\$ 17.95$ each
$12.5 \mathrm{VDC}, 3-30 \mathrm{MHz}$
80 Watts output, 12 dB gain

MRF472
$12.5 \mathrm{VDC}, 27 \mathrm{MHz}$
4 Watts output, 10 dB gain $\$ 1.69$ each

CARBIDE Circuit Board Drill Bits for PCB Boards
5 mix for $\$ 5.00$

MURATA CERAMIC FILTERS		
SFD 4550	455 KHz	$\$ 2.00$
SFB	4550	455 KHz
CFM	$455 E$	455 KHz
SFE 10.7 MA	10.7 MHZ	5.50

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR
$5.52-2.7 / 8$
5.64j-2.7/8
5.595-2.7 USB YOUR CHOI
$5.595-2.7 / 8 / \mathrm{L} \$ 12.99 \mathrm{e}$
5.595-2.7 L.SB
9.0-USE 心W

J310 N-CHANNEL J - FET 450 MH:
Good for VHF/UHF Amplifier, oscillator and Mixers. $3 / \$ 1.00$

AMPHENOL COAX RELAY
26 VDC COil SPOT \#360-11892100 watts Good up to 18 Ghz
$\$ 19.99$ each
78 MO 5 Same as 7805 but only $\frac{1}{2} \mathrm{~A}$
5 VOC 49ع each or $10 / \$ 3.00$

NEW TRANSFORMERS
F-18x 6.3 VCT (a) 6Amps $\$ 6.95$
F-46X 24V @ 1Amp 5.95
F41X 25.2VCT@2Amps 5.9!
P-3330 10VCT@3Amps 7.9!
P-360.t 20VCT@ 1Amp 4.9!
K-32B 28VCT @ 100 MA 4.9 !
E30554 Dual 17v@1Amp ea.6.9:
EIMAC FINGER STOCK \#Y-302
36 in. long $x \frac{1}{2} \mathrm{in}$. $\$ 4.99$ each

SAMISHMUMEDS SIBMUS

2822 North 32nd Street, \#1 • Phoenix, Arizona 85008 - Phone602-956-9423

RF203	\$P.O.R.		BFW92A \quad \$ 1.00		UHF/VHF RF POWER TRANS ISTORS
RF216	19.47		BFW92 . 79		CD2867/2N6439
RF221	8.73		MMCM918 14.30		60 Watts output
RF226	10.20		MMCM2222 15.65		Reg. Price $\$ 45.77$
RF227	2.13		MACM2369 15.00		SALE PRICE $\$ 19.99$
RF 238	10.00		MMCM2484 15.25		
RF 240	14.62		MMCM3960A 24.30		1900 MHz to 2500 MHz DOWNCONVERTERS Intended for amateur radio use.
RF245	28.87		MWAl30 $\quad .08$		
RF 247	28.87		MH210 7.46		Tunable from channel 2 thru 6.
2F262	6.25		MWA220 $\quad 3.03$		34 dB gain 2.5 to 3 dB noise.
2F314	12.20		MWLA3 5.6 ?		Warranty for 6 months
2F406	11.33		MNA310 $\quad .03$		Model HMR II
2F412	20.65	NEW	MRF472 1.20 ea.		
3F421	27.45		10/9.50		$\$ 225.00$ (does not include coax)
[F422A	38.25		100/69.00		4 foot Yagi antenna only
¢F422	38.25		1000/480.00		\$39.99
(F428	38.25				Downconverter kit - PCB and parts
IF428A	38.25		tubes		\$69.95
iF 426	8.87		6KD6	\$ 5.00	Power Supply kit - Box, PCB and parts
F426A	8.87		SLQ6/6JE6	5.00	\$49.99
F 449	10.61		6MJ6/6LQ6/6JE6C	6.00	Downconverter assembled
F449A	10.61		6LF6/6MH6	5.00	\$79.99
F450	11.00		128Y7A	4.00	Power Supply assembled
F450A	11.77		2E26	4.69	\$59.99 kit form with
F452	15.00		$4 \times 150 \mathrm{~A}$	29.99	Complete Kit form with Yagi antenna
F453	13.72		$4 \mathrm{C} \times 2508$	45.00	\$109.99
F454	21.83		$4 \mathrm{C} \times 250 \mathrm{R}$	69.00	REPLACEMENT PARTS
$=454 \mathrm{~A}$	21.83		$4 \mathrm{C} \times 300 \mathrm{~A}$	109.99	MRF901 \$ 3.99
$=455$	14.08		$4 \mathrm{C} \times 350 \mathrm{~A} / 8321$	100.00	M8DIO1 1.29
$=455 \mathrm{~A}$	14.08		$4 \mathrm{C} \times 350 \mathrm{~F} / \mathrm{J} / 8904$	100.00	. 001 Chip Caps 1.00
- 474	3.00		$4 C \times 15008 / 8660$	300.00	Power Supply PCB 4.99
-473	2.02		811 A	20.00	Downconverter PCB19.99
$: 476$	2.25		6360	4.69	NEW BOGNER DOWNCONVERTER
$: 477$	10.00		6939	7.99	
$: 485$	3.00		6146	5.00	Industrial version.
$: 492$	20.40		6146A	5.69	1 year guarantee. \$225.00
502	. 03		6146B/8298	7.95	
604	2.00		6146 W	12.00	86 FIN MOTOROLA BUS EDGE CONNECTORS
629	3.00		6550A	8.00	Gold plated contacts
648	26.37		8908	9.00	Dual $43 / 86$ pin .156 spacing
901	3.99		8950	9.00	Soldertail for PCB $\$ 3.00$ each
902	9.41		4-400A	71.00	
904	3.00		4-400C	80.00	CONTINUOUS TONE BUZZERS
911	4.29		$572 \mathrm{~B} / \mathrm{T} 160 \mathrm{~L}$	44.00	12VDC \$2.00 each
5175	11.73		7289	9.95	IlOVAC MUFFIN FANS New $\$ 11.95$ Used $\$ 5.95$
3004	1.39		3-10002	229.00	
90	1.00		3-5002	129.99	
31	1.25				PL259 TERMINATION 520 hm 5 watts$\$ 1.50$ each
36	1.50		TO-3 TRANSISTOR SOCKETS Phenolic type $6 / \$ 1.00$		

SxWICHMUTHYRSEIBSUS

2822 North 32nd Street, \#1 • Phoenix, Arizona 85008

TRANSISTORSIICS

Motorola MHW 252 VHF power amplifier.
frequency range: $144 \cdot 148 \mathrm{MHz}$.
output power: 25 W .
minimum gain 19.2 dB .
$\$ 29.67$ each.
Motorola MC 1316P.
House no. same as HEP C6073 \& EC9814.
2.W audio amplifier.
$\$ 1.29$ ea., 10 for $\$ 9.50$.

Fairchild 007-03 IC.

ECG no. 707 Chroma demodulator.
$\$ 1.29$ ea., 10 for $\$ 8.50$.
Motorola rf transistors.
Selection Guide \& Cross-Reference catalog.
43 pgs.
$\$ 1.99$ ea.

RCA Triacs.

Type T2310A.
TO-5 Case with heat sinks.
$1.6 \mathrm{Amp}, 100 \mathrm{VDC}$, Igt 3 mA .
Sensitive gate.
$\$ 1.00$ each
RCA power transistors.
NPN RCS 258
Vceo 60 NFE 5 mA .
IC 20 Amps Vce 4 V
250 Watts. Ft 2 MHz .
$\$ 3.00$ each
RCA Triacs.
Type T4121B/40799
200 VDC 10 Amps.
Stud Type.
$\$ 3.69$.

RCA Triacs.

Type 40805/T6421D.
30 Amps, 400 VDC.
$\$ 5.00$ each.

Motorola rf amplifier.

544-4001-002, similar to type MHW 401.2.
1.5 watts output.
$440-512 \mathrm{MHz}$.
15 dB gain min. $\$ 19.99$ each.

DIODES

HEP 170.
3.5 A, 1000 PIV
$20 \$$ ea., 100 for $\$ 15.00$

061005.

1.5 A, 1000 PIV
$15 ¢$ ea., 100 for $\$ 12.00$.

MVK 1153.

$25 \mathrm{~mA}, 20,000$ PIV.
$\$ 1.00$ ea., 10 for $\$ 8.00$.

SCMS 10 K.

$15 \mathrm{~mA}, 10,000$ PIV.
$\$ 1.69$ ea., 10 for $\$ 12.50$.
Motorola MA 752 Rectifier.
6 Amps, 200 PIV, 4/\$1.29.

High-voltage diode EK500.
5000 Volts, $50 \mathrm{~mA}, 99 \mathrm{c}$ each.
Fairchild LEDs.
FLV 5007 \& 5009 red.
Case type TO-92.
6/\$1.00.

Motorola SCR.

TO.92 Case, 0.8 Amp, 30V.
Igt 0.2 Vgt 0.8 .
Same as 2N5060.
$4 / \$ 1.00$ or $100 / \$ 15.00$.
Dialco Type 555-2003.
EDD 5 VDC with built-in resistor 69 each

PARTSIASSEMBLIESI ACCESSORIES

Wakefield Thermal Compound 120-8. 8-oz. jar, \$5.35

TY-Raps 08470.

7 in., 50/\$2.00.
1W Audio Amplifier.
parts list:
3 transistors
5 resistors.
1 capacitor.
1 volume control pot.
All parts assembled on PC board.
Requires 6-9 VDC for operation.
High-impedance input; 8 -ohm output
$\$ 1.00 \mathrm{ea}$.
VU Meters, $50 \mu \mathrm{~A}$.
$1-1 / 2^{\prime \prime} \times 1-1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$.
$\$ 1.99$ ea.
Litronix DL-4509.
4-digit readout.
\$2.99 ea.
New Simpson 260-7 VOM.
\$99.99.
12 VDC lamps, 60 mA .
1/8" round x $1 / 2^{\prime \prime}$ long w/12"-long leads.
39¢ ea., 10 for $\$ 2.50$.

Heat Sink.

(great for rf power amplifiers.)
$3-3 / 4^{\prime \prime}$ high $\times 7^{\prime \prime}$ long.
Flat one side only.
$\$ 4.99$ ea.
5-pin DIN Jack \& Plug Set.
$\$ 1.29$ per set.
Grain-of-wheat lamps.
$6.3 \mathrm{VDC}, 50 \mathrm{~mA}$.
8 for $\$ 1.00$.
Cooling fans.
2" round $\times 3$ " long.
$\$ 5.95$ ea.
Ten-turn pot w/ten-turn knob.
2000 ohms.
$\$ 6.95$.

Phone 602-956-9423

Rf choke 70F276A1.
$2.7 \mu \mathrm{H}, 250 \mathrm{~mA}$.
69 ea., 25 for $\$ 12.00$.
Water pump, multi-purpose.
6 VDC/0.33 gpm.
$\$ 2.99 \mathrm{ea}$.
Switch, dpdt, push on/push off.
Microswitch no. 92PB19-T2.
5.A, 250 VAC.
$\$ 1.29$ ea.
New Sylvania Pathmaker.
CATV amplifier
Hybrid IC ampl. Model 152.
No data. Has two if transistors and 1 if amplifier plus many other parts.
$\$ 29.99$ ea.
New big rf connectors, type 1.
Prodelin, Inc. no. 78-880-1.
$\$ 12.99 \mathrm{ea}$.

Type 2

Cablewave System, Inc.
735201/FX38-50NF/16733.
Taperlok.
$\$ 12.99$ each.
1000 pF feedthru caps.
Solder Type.
4/\$1.00.
TO-5 type relay.
WABCO 91630301-10.
26 VDC.
$\$ 4.99$ each.
Rf coax relay.
Transco 11100.
SPDT. Type N Connectors.
$\$ 29.99$ each.
(Only 12 in stock.)
4 each RCA 7651 tube with
socket $\$ 200.00$ per set
One tube and one socket
Socket only $\$ 100.00$.
Rotron biscuit fan.
115 VAC Part BT 2A1.
$\$ 12.99$ each.
3-M Company Bumpons.
2 types:
Type 1, SF.5012, black,
$0.5^{\prime \prime}$ dia. $\times 0.14^{\prime \prime}$ high
($12.7 \times 3.55 \mathrm{~mm}$).
$70.0700 \cdot 1813.3$ sheet of 4 $\$ 3.00$.

Type 2,

SJ-5519 0.78" $\times 0.35^{\prime \prime}$ rect.
$\times 0.2^{\prime \prime}$ high.
$(19.8 \times 8.89 \times 5.08 \mathrm{~mm})$,
brown, $70-0700-2982-5$.
Sheet of $64, \$ 4.29$ self adhesive.

Joy Sticks.

JVC-40 40kn.
(2) video controllers, \$4.99.

Power one.

model CP-198 power
supply. Input $105-125 \mathrm{VAC}$; output
$5 \mathrm{VDC}, 6$ Amps.
$\$ 19.99$ each.

SEwicginurnvissurvuls

2822 North 32nd Street, \#1 • Phoenix, Arizona 85008 • Phone 602-956-9423

90 WATT AMPLIFIER: \$89.95! SEE YOU AT DAYTON

SPECIAL PACKAGE DEAL
FACTORY DIRECT ONLY
That's right - 90 watts of linear power for 2 meters class AB1 for FM \& SSB for only $\$ 89.95$. Also offering a 15 dB gain in-line preamp with integrated T/R relay. A $\$ 29.95$ value, for only $\$ 20.00$ when purchased with the VJ9OL Amplifier.

12345678910 POWER INPUT IN WATTS
POWER CHART

*ORDER TODAY TOLL FREE (800) 231-9649

PRICING OFFER EXPIRES MAY 1, 1981

Each VJ Product component is hand wired and individually tuned for maximum reliability and performance. VJ Products are guaranteed to be free of defects in parts or workmanship for 1 year from the date of purchase. POWER TRANSISTORS ARE EXCLUDED, BUT WARRANTED FOR 90 DAYS.. Visa accepted. Immediate shipment guaranteed by VJ Products, Inc.

SERVING THE ELECTRONICS INDUSTRY SINCE 1965 V-J Products, Inc. 505 E. Shaw Street, Pasadena, Texas 77506 (713) 477-0134

AEA CK-1 Morse Memory Keyer

Let's see. Paper, sharp pencils, check sheets, dupe log and coffee, plenty of it. It's Friday night, five minutes before the start of a 160 -meter contest. I've finally got my station to the point that I feel I can be competitive with the big guns. But this year, I think l've got the edge on them. This year I have the new AEA CK-1 Morse Memory Keyer.

In past contests l've been limited to using a bug or straight key. Don't get me wrong, they're great to use, but in high-speed contesting l've never felt I was good enough to be competitive with them. Well, with all the new developments in chip technology, it was only a matter of time before some enterprising company designed a compact contest keyer. That company is Advanced Electronic Applications from Lynnwood, Washington.

description

The first impression one gets when opening the package is that instead of packing the CK-1 memory keyer, the dealer made a mistake and sent a pocket calculator. The keyer is extremely small, only 3.25×6 inches $8.3 \times 15.2 \mathrm{~cm}$) and very light, less han half a pound $(0.22 \mathrm{~kg})$. The layrut is simple, with all switches, knobs ind buttons easy to locate and oper-
ate. The keyboard is set up like a telephone Touch Tone ${ }^{\text {TM }}$ pad. When you press the keys you get a positive feel, plus the keyer "bleeps" to let you know input has been made.

owner's manual

Probably the most important aspect of a product like this is the operating manual. Without a clear, concise set of instructions, operating the CK-1 would be impossible. AEA has gone to some time and trouble to put together one of the most complete instruction manuals I have ever seen. All keyer features are described completely, and all functions are explained step-by-step, with examples, so there can be no mistake when operating the keyer.

variable functions

One of my first thoughts was that since there was only one turnable control, you can't vary the sidetone, weighting, or speed. I was wrong. The CK-1 is like a microcomputer: you enter the appropriate data by hitting the appropriate sequence of numbers (buttons), and you can change the sidetone, weighting, or speed to whatever is most comfortable. You can also preset two speeds into the keyer. That's great when QSY'ing across the band and you want to either speed up or slow down.

memory

The most important operating feature of the AEA CK-1 is the variablelength memory. Ten separate memories can hold a total of approximately 500 characters. For the contest, I loaded a CQ into memory 1 , signal report, section, and serial number into 2 , and THANKS CU AGN into 3 . Messages can be loaded in real time or automatically. In real time you send dots, dashes, and spaces. You've got to know exactly what you want to send, because if you pause, the CK-1 loads that pause. You can also load each memory automatically. When you stop sending, the memory stops
loading information. This way, should you have any questions about what you're sending, you won't continue loading the keyer memory.

editing

Now, here is another real plus. Should you make a mistake, the CK-1 has an edit function that will eliminate the need to reload the entire memory. If you'd like to add something to an existing message, punch it up and let it run until you reach the point at which you'd like to add something. Stop the message by hitting either the paddle or \# key. Set the keyer to MEMORY LOAD, press function keys * and 5 , and, with the paddle, key in the change. Then switch back to MEMORY SEND and off you go again. To remove part of a message, set the keyer up as you would for an addition and run the memory to the point at which the deletion is to be made. Push * and 5 to program the keyer, then delete the remaining message. Just push \# and it's done.

another feature

OK, now I have my CQ set up in memory 1 , I've made memory 2 my RST, state, and serial number. Serial number? That's right. The CK-1 can automatically put an incremented serial number into any message register you'd like, 01 to 9999 . To put the serial number into the keyer, load the message, then, at the point you want the serial number, push * and O and the serial number function is automatically initiated at 01 . You can change that if you'd like to put any number in by pressing *, *, O , then the four-digit serial number. Sounds complicated, but it's really simple, easy, and fun.

Aha - there's a CQ. "PA0HIP DE N1ACH," I flash with the paddle. Got him. Press memory 2 and off goes the CK-1 "DE N1ACH. UR 599599 NH NH DE N1ACH BK." I hit memory 3 for a quick 73 and tune some more. I never knew a contest could be this much fun.

Craig Clark, N1ACH

$600-\mathrm{MHz}$ prescaler

The TP 600 is a high-sensitivity prescaler which will extend the upper frequency limit of most frequency meters by a factor of 10 , up to a maximum of at least 600 MHz . Input and output are via 50 -ohm BNC connectors. Input impedance is nominally 50 ohms and input sensitivity better than 10 mV from 40 MHz to 600 MHz .

Power requirements are 6 to 9 Vdc from an external power supply or optional ac adapter. A lead is supplied fitted with the correct connectors to allow the unit to be powered from the auxiliary power socket fitted to Thandar frequency meters. Current consumption is 150 mA nominal, 170 mA maximum. Case size is 4.5 inches $(114 \mathrm{~mm}) \times 1.70$ inches $(43 \mathrm{~mm}) \times$ 1.10 inches (28 mm); weight is 4.3 ounces (120 grams). This unit is available from stock, price $\$ 98$. For further information, contact Henrick K. Gille, Energy Electronic Products, 6060 Manchester Avenue, Los Angeles, California 90045.

vhf omni-match

The LAR VHF Omni-Match takes a wide range of inputs, making antenna/feed lines look like nonreactive 50 ohms. The unit lowers SWR, for bigger output. It's versatile in the $144-174 \mathrm{MHz}$ range, with continuous coverage of Amateur, marine, and private mobile radio bands. No switching.

The Omni-Match gives whole-band coverage on narrow-band antennas such as Yagis and quads. Just tune out the SWR. It's simple to install and tuned in seconds with only two controls. Write direct or contact your dealer. LAR Modules Limited, 60 Green Road, Leeds LS6 4JP England.

squeeze wrench

To use the Squeeze Wrench, just hold it in a stationary position and squeeze. Its strong torque action gets the job done fast and securely. For reverse action, just flip it over; it ratchets in either direction. The Squeeze Wrench comes in a 22 -piece kit that
contains both standard and metric sizes. The complete kit includes the Squeeze Wrench itself (9 / 16 inch and 14 mm); five standard size sockets: $1 / 4,5 / 16,3 / 8,7 / 16$, and $1 / 2$ inches; five metric sockets: $9,10,11,12$, and 13 mm ; two standard slot screwdrivers; two Phillips screwdrivers; six Allen wrenches, and one adapter for use with screwdriver and Allen wrench heads. All working components are heat treated to the highest standards.
The Squeeze Wrench kit comes with a lifetime warranty and guarantee of complete satisfaction or money back. Price is $\$ 24.95$ per kit, postpaid, from Howard Products Company, Dept. HR, P.O. Box 57246, Dallas, Texas 75207.

high-voltage power transistors

Motorola announces a new series of silicon power transistors which extends the power handling capability of its plastic encapsulated devices above the 100 -watt level. The new Motorola devices are packaged in the JEDEC TO-218AC plastic package, which has a large die mount and heat sink area. Like the familiar but smaller TO-220 plastic package, the TO-218 offers the convenience of singlesided mounting, thus reducing assembly labor costs.
The new series of plastic devices to be introduced by Motorola are the MJE4340 and MJE4350 series. These are complementary transistors with a continuous collector current rating of 10 amperes. $V_{\text {CEO }}$ ratings range from 100 to 160 volts, and dissipate 125 watts. Contact Motorola Semiconductor Products, Inc., P.O. Box 20912, Phoenix, Arizona 85036.

ac power line protector

The series 2000 ac power line protector protects an entire facility from damage due to lightning and transient overvoltages. Protection is provided without power interruption. The protectors install at the main
service panel (load side) and provide heavy-duty protection from lightning and transients that occur in tough industrial environments.

Operating in nanoseconds, the shunt-connected 2000 series protectors will vigorously clamp lightning and transient overvoltages on the ac lines to safe levels whenever the clamping threshold is exceeded. After each transient the protector recovers automatically - without power interruption. Nuisance circuit breaker tripping, so common with gas arrestors and crowbar devices, is eliminated. The 2000 series can withstand thousands of severe surges without degradation of electrical performance.

Long life and maintenance-free operation also make these units the perfect protector for remote and unattended stations, for facilities, or stations with no backup capabilities. The protectors are enclosed in a moisture-proof housing to ensure reliable operation in any environmental condition. Contact MCG, 160 Brook Avenue, Deer Park, New York 11729.

quartz digital clocks

Benjamin Michael Industries, Inc., announces the addition of the 173D Presentation Model clock to its line of quartz digital timepieces. The 173D contains two independent digital electronic clock movements. Greenwich Mean Time is displayed in $24-$ hour format on one clock and 12 -hour time with AM/PM indicators on the other. Both large displays are of the LCD type. The 173D features quartz crystal accuracy along with one year of operation on a single, standard penlight battery. The clock features a solid walnut case which accentuates the rough cut, gold anodized, brushed aluminum face plate. Precious metal contact switches and brass hardware are used throughout.

The model 173D sells for \$119.95 with keyways for wall mounting. A matching walnut desk stand may be ordered for an additional $\$ 9.95$. Deliv. ery is from stock within four weeks

Contact Benjamin Michael Industries, Inc., 65 East Palatine Road, Prospect Heights, Illinois 60070.

heavy duty towers

Designed especially with the ham operator in mind, Aluma Tower's new extra-heavy-duty aluminum tower has uprights and cross braces of 1 -inch seamless drawn aluminum tubing, with stainless-steel aircraft cable connecting the telescoping sections. The mast is 2 inches in diameter $\times 8$ feet long and is supplied bolted in place.

Aluma Tower's telescoping construction and tilt-up style enables it to withstand any weather conditions. Write Aluma Tower Company, 1639 Old Dixie Highway, Vero Beach, Florida 32960.

small-signal, low-noise transistors

TRW RF Semiconductors has published a new catalog containing detailed information on its family of 15 small-signal, low-noise transistors. Catalog 80 is a 52 -page booklet that contains specifications, performance graphs, photographs, circuit diagrams, and package drawings and dimensions. All devices in the catalog are NPN silicon bipolar transistors with gold metallization.

Copies are available from any authorized TRW RF Semiconductors distributor or from Bernie Lindgren, Sales Manager, TRW RF Semiconductors, 14520 Aviation Boulevard, Lawndale, California 90260.

short-form rf catalog

TRW RF Semiconductors has published a large-format, 12-page, shortform catalog, number 503A, that lists basic specfications for 156 components.

Ten categories of products are shown, along with photographs and engineering drawings of each package type. There are an alphanumeric ndex and a cross-reference table.

Copies are available from any TRW

RF Semiconductors sales office or authorized distributor, or from Dan Faigenblat, TRW RF Semiconductors, 14520 Aviation Boulevard, Lawndale, California 90260.

five-mode terminal

A five-mode sending terminal, by Curtis Electro Devices, offers keyboard origination of Morse, ASCII, and Baudot codes in addition to being a paddle keyer, code practice generator, and contest memory unit.

Features include a 256-key sending buffer and a 256-key soft sectored message memory with up to four callups. The two-key lockout and fully debounced keyboard offers all domestic, European, and many commercial prosigns for CW, all Baudot characters and upper and lower ASCII communications characters. Automatic line length control, word wraparound, hold, and backspace make sending easy and error-free. All LTRS and FIGS shifts are automatic in the Baudot mode.

Pot controls are provided for speed, weight, pitch, and volume, together with meter displays of Morse speed and buffer status. Output is via mercury relays for the keyline and PTT (or KOS) line. RTTY output is a loop switch. The message memories include three fixed preambles (CQ, CQ TEST, ID and QRS) plus up to four programmable memories.

Powered by either ac or +12 Vdc , the KB-4900 measures $12 \times 81 / 2 \times$ $41 / 2$ inches and weighs 5 pounds. It is priced at $\$ 379.95$ FOB the factory. Write Curtis Electro Devices, Inc., Box 4090, Mountain View, California 94040.

speech compressor/ expander

VSC Corporation has introduced the VSC Model AV3, which uses the Wollensak Bi-Peripheral Drive to insure long-term, reliable performance. A simple movement of the VSC speed control lever plays any standard audio cassette from 60 percent

EVERYTHING
YOU NEED TO
KNOW TO PASS
THE • TECHNICIAN • GENERAL • ADVANCED \& EXTRA CLASS EXAMS

*
 COMPLETE AMATEUR RADIO REGULATIONS

STILL ONLY \$4.00

The American Radio Relay League, Inc.
225 Main St. Newington, CT 06111

to $21 / 2$ times normal speed, or about 90 to 275 words per minute, without pitch distortion.

VSC operates by sampling the high-frequency speeded audio signal at subaudible rates and discarding every other sample. The remaining samples are then stretched out, returning them to their original frequencies and filling the gaps left by the discarded samples. These remaining samples are joined in a way that minimizes splicing noise. With VSC the actual "stretching" of the signal samples is accomplished with a variable delay line for which a low-noise bucket brigade device (BBD) can be used.

VSC speed listening is used by students, businessmen, and professionals who review recorded lectures, meetings, notes, professional updates, and dictation. The technology provides them with the flexibility to absorb recorded speech faster than the average person reads. Research shows that faster speeds increase concentration, which in turn improves comprehension. Additionally, the Model AV3 can provide highspeed inspection of printed circuit boards, wire wrapping matrices, cable harnesses and pin connections. Most importantly, VSC has virtually eliminated all proofing errors. The VSC Corporation expects the VSC feature to become popular on a wide array of audio equipment, including hand-held cassette players, auto cassette decks, telephone answering machines, dictating/transcribing units, and film and video editing equipment.

The Model AV3 offers separate tone control to adjust sound for maximum clarity and comfort, cue and review, digital tape counter, and remote pause control. An open cassette chamber makes loading a breeze and readily accepts minicassette adapters. Headphone, microphone and foot pedal jacks are included. The compact and impactresistant speech compressor/ expander comes with a handle and
locking cover for easy portability and storage. This top-of-the-line VSC unit weighs 8.5 pounds and is available for $\$ 495$ from VSC, 185 Berry Street, San Francisco, California 94107.

512-MHz digital frequency counter

Heath Company has announced the introduction of a new $512-\mathrm{MHz}$ portable frequency counter, available either in kit form or assembled. The IM-2420 features four gate times and eight-digit resolution for precise readings. A period function gives cycle time in seconds, while the frequency ratio function provides the ratio between two input frequencies.
For more accurate measurements, a standby power switch can keep the crystal oven warm for maximum frequency accuracy. The oven is proportionally controlled to keep the internal time base within 0.1 part per million over a wide temperature range. The IM-2420 also has provisions for using external time base signals. Four gate times and a large, 0.43 -inch-high, eight-digit LED display provide the resolution necessary to measure UHF signals. The IM-2420's $4-15 \mathrm{mV}$ typical sensitivity allows counting of lowlevel signals. Trigger level control ensures stable counting when noise is present, and provides more accurate measurement of complicated waveforms. Frequency measurements can be made by direct connection, or by using the optional SMA-2400-1 swiveling telescopic antenna. The IM2420 frequency counter can be wired for either 120 or 240 Vac operation.
The Heathkit IM-2420 512-MHz frequency counter is mail order priced at $\$ 239.95$, F.O.B. Benton Harbor, Michigan 49022. A factory assembled and tested version, SM-2420, is alsc available, mail order priced a1 \$299.95. Write Heath Company, Dept. 350-660, Benton Harbor, Mich igan 49022. In Canada, write Heatt Company, 1480 Dundas Highwa) East, Mississauga, Ontario L4X 2R7.

CALL TOL FRE

For the best deal on
-AEA•Alliance•Amec 0॰Apple•ASP - Avanti•Belden•Bencher• BirdeCDE
-CES-Communications Specialists - Collins•Cushcratt• Daiwa•DenTron -Drake•Hustler•Hy-Gain•IcomeIRL•KLM -Kenwood•Larsen•Macrotronics•MFJ - Midland• Mini-Products•Mirage•Mosley

- NPC• Newtronics - Nye• Panasonic
- Palomar Engineers• Regency•Robot
- Shure - Standard•Swan• Tempo
- Ten-Tec•Transcom•Yaesu

NO APRIL FOOLING!

TenTec OMNI/D Series C Transceiver \$999
YAESU FRG-7700 Full Coverage RCVR .. \$489
YAESU FT-207R..... \$269
KENWOOD TS-830S 9Band XCVR .. In Stock! KENWOOD TR-7800 2Meter XCVR.. In Stock!
TEMPO S-1 only \$239 With Touchtone ${ }^{\circledR}$.. 269
APPLE Disk Based System: Apple II or II Plus with 48k RAM installed and DOS 3.3 \$1899
Apple prices include prepaid shipping within continental United States
Quantities limited... all prices subject to change
Erickson is accepting late model amateur radio equipment for service: full time technician on duty
CALL TOLL FREE (outside lilinois only) (800) 621-5802

HOURS: 9:30-5:30 Mon., Tues., Wed. \& Fri. 9:30-9:00 Thursday 9:00-3:00 Saturday
ERICKSON communications Chicago. IL 60630 5456 North Milwaukee Ave. (312) 631-5181 iwithin Illinois)

Performance and value are built into every Larsen Antenna because of craftsmanship that accepts no compromise.

Making mobile antennas, mounts and accessories is Larsen's only business. All of the company's research, engineering and production efforts are directed to making the best antennas money can buy. The end result is the exclusive Külrod by Larsen. A Külrod antenna delivers maximum radiation efficiency instead of losing power to heat.

Larsen's antenna clan includes low band, high band, quarter wave, VHF, UHF, mobile, fixed base and Kūlduckies for hand-helds. And Larsen offers every type of permanent and temporary vehicle mount - including a magnetic model that's a real grabber.

So whatever band you operate on, if your antenna is a Larsen you'll HEAR the difference!

((1)))
 P.O. Box 1686 In Canada, write to:
 Vancouver, WA 98668 Canadian Larsen Electronics, Ltd.
 Phone: (206) 573-2722 283 E. 11th Ave., Unit 101 Vancouver, B.C. V5T 2C4 Phone: (604) 872-8517

[^16]
Arizona

POWER COMMUNICATIONS CORPORATION
1640 W. CAMELBACK ROAD PHOENIX, AZ 85015
602-242-6030 or 242-8990
Arizona's \#1 "Ham" Store. Kenwood, Yaesu, Icom and more.

California

C \& A ELECTRONIC ENTERPRISES
2210 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834-5868
Not The Biggest, But The Best Since 1962.

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003 Trades
714-463-1886 San Diego
The Home of the One Year Warranty

- Parts at Cost - Full Service.

QUEMENT ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1933.

SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Azden, Icom, Kenwood, Tempo,
Ten-Tec, Yaesu and many more.

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Connecticut's Oldest Ham Radio Dealer

Delaware

[^17]
Florida

AGL ELECTRONICS, INC.
1898 DREW STREET
CLEARWATER, FL 33515
813-461-HAMS
West Coast's only full service
Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416
Atlas, B\&W, Bird, Cushcraft, DenTron, Drake, Hustler, Hy-Gain, Icom, K.D.K., Kenwood, MFJ, Rohn, Swan, Ten-Tec, Wilson.

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Outside llinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri.; 9:30-9:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM SHACK

808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics,
Santec and others.

Kansas

ASSOCIATED RADIO
8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381.5900
America's No. 1 Real Amateur Radio
Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486
Kenwood, Drake, Icom, Ten-Tec, Tempo, DenTron, Swan \& Apple Computers.

Massachusetts

TEL.COM, INC.
675 GREAT ROAD, RT. 119
LITTLETON, MA 01460 617-486-3040
The Ham Store of New England You Can Rely On.

TUFTS RADIO ELECTRONICS
206 MYSTIC AVENUE
MEDFORD, MA 02155
617-391-3200
New England's friendliest ham store.

Minnesota

PAL ELECTRONICS INC. 3452 FREMONT AVE. NO. MINNEAPOLIS, MN 55412 612-521-4662
Midwest's Fastest Growing Ham Store, Where Service Counts.

New Jersey

RADIOS UNLIMITED

P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
New Jersey's Fastest Growing
Amateur Radio Center.

mateur Radio Dealer

ROUTE ELECTRONICS 46 225 ROUTE 46 WEST TOTOWA, NJ 07512 201-256-8555
Drake, Cubic, DenTron, Hy-Gain, Cushcraft, Hustler, Larsen, MFJ, Butternut, Fluke \& Beckman Instruments, etc.

WITTIE ELECTRONICS

384 LAKEVIEW AVENUE
CLIFTON, NJ 07011
201-546-3000
Same location for 63 years. Full-line authorized Drake dealer. We stock most popular brands of Antennas and Towers.

New Mexico

PECOS VALLEY

AMATEUR RADIO SUPPLY
112 W. FIRST STREET
ROSWELL, NM 88201
505-623-7388
Now stocking Ten-Tec, Lunar, Icom, Morsematic, Bencher, Tempo, Hy-Gain, Avanti and more at low, low prices. Call for quote.

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service
Ham and Commercial Radio Store.

GRAND CENTRAL RADIO

124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2630
Drake, Kenwood, Yaesu, Atlas,
Ten-Tec, Midland, DenTron, Hy-Gain, Mosley in stock.

HARRISON RADIO CORP.

20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since
1925. Call toll free 800-645-9187.

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. 1 (315) 337-0203
Authorized Dealer - ALL major
Amateur Brands.
We service everything we sell!
Warren K2IXN or Bob WA2MSH.

Ohio

UNIVERSAL AMATEUR RADIO, INC. 1280 AIDA DRIVE
COLUMBUS (REYNOLDSBURG), OH 43068
614-866-4267
Complete Amateur Radio Sales and Service. All major brands - spacious store near I-270.

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
Icom, Bird, Cushcraft, CDE, Ham-
Keys, VHF Engineering, Antenna
Specialists.

SPECIALTY COMMUNICATIONS
2523 PEACH STREET
ERIE, PA 16502
814-455-7674
Service, Parts, \& Experience For Your Atlas Radio.

Virginia

ELECTRONIC EQUIPMENT BANK

516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.'s One Stop
Amateur Store. Largest Warehousing of Surplus Electronics.

78th Edition
Brand new, fully revised, covers the latest FCC exams. The new 78th Edition should be required reading for everyone studying for the Technician, General, Advanced or Extra class license. This "grandfather'' of all study guides has been carefully researched and prepared to ensure that you are capable of passing the Amateur exams if you successfully complete the book. Every Amateur should have a copy as it also contains a complete set of the latest FCC Amateur Rules and Regulations. © 1981. Bigger than ever.
AR-LG Softbound $\$ 4.00$ Plus $\$ 1.00$ Shipping

ORDER TODAY

Available From:
Ham Radio's Bookstore
Greenville,
New Hampshire 03048

Food for thought.

Our new Universal Tone Encoder lends it's versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequency-just dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5 db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by $6-30 \mathrm{vdc}$, unregulated at 8 ma .
- Low impedance, low distortion, adjustable sinewave output, 5 v peak-to-peak.
- Instant start-up.
- Off position for no tone output.
- Reverse polarity protection built-in.

Group A

67.0 XZ	91.5 ZZ	118.82 B	156.75 A
71.9 XA	94.8 ZA	123.03 Z	162.25 B
74.4 WA	97.4 ZB	127.33 A	167.96 Z
77.0 XB	100.01 Z	131.83 B	173.86 A
79.7 SP	103.51 A	136.54 Z	179.96 B
82.5 YZ	107.21 B	141.34 A	186.27 Z
85.4 YA	110.92 Z	146.24 B	192.87 A
88.5 YB	114.82 A	151.45 Z	203.5 M 1

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B

TEST-TONES:	TOUCH-TONES:	BURST TONES:				
600	697	1209	1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450
1500	852	1477	1700	1950	2250	2500
2175	941	1633	1750	2000	2300	2550
2805			1800	2100	2350	

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened, shortened or eliminated by changing value of resistor

VISA

Adverifisers check-off

. for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the spacepetween name and number. Ex: Ham Radio 234

*Please contact this advertiser directly. Limit 15 inquiries per request.

April, 1981

Please use before May 31, 1981

Tear off and mail to
HAM RADIO MAGAZINE - "check aff
Greenville, N. H. 03048

DON \& MIKE'S SPRING HAS SPRUNG SPECIALS

Cubic-Swan 103 $\$ 1195.00$
Astro 150A. 779.00
Mirage B23 1 watt-30 watt
$\operatorname{amp} . . .$.
DSI 5600A w/Ant/Ac 185.00
Robot 800 749.00
Cushcraft A3 Tribander . . . 169.00
AEA Morsematic 169.00
Bird 43, Slugs Call
CDE Ham-4 Rotor 199.00
Ham-X 269.00
BT-1 HF/VHF Rotator. 79.95
FDK Palm 2 Handie with
BPIAC 149.00
Cetron, GE 572B 38.00
Kenwood Service Manuals Stock.
10.00 ea.

Telrex TB5EM 425.00
Telrex Monobanders Call
Santec HT-1200
Synthesized 339.00

Order Your KWM380 Now!
 Old Pricing \& Free Goods!
 Rockwell Accessories in Stock

Adel Nibbling Tool 8.95
Janel QSA5.............. . 41.95
Rohn Tower 20\% off dealer 25G, 45G Sections
Belden 9405 Heavy Duty
Rotor Cable 2\#16, 6\#18 .. . 45 $\$ / \mathrm{ft}$
Belden 8214 RG-8 Foam $36 \mathrm{c} / \mathrm{ft}$
Belden 9258 RG-8 Mini-coax. 19¢/ft
Alliance HD73 Rotor 109.95
Amphenol Silverplate
PL259.
1.00

ICOM 255A 2M Synthesized 339.00 w/touch-tone mike (limited qty.)
ICOM 260A 2M SSB/FM/CW 449.00
Late Specials:
Kenwood TS-520SE, TS-130S . Call ICOM IC2AT/TTP/NICAD . . 249.00
Bearcat 300 399.00

Lunar 2M4-40P
109.00

Call for TS830S, TS130S plus accessories
MASTER CHARGE • VISA
All prices fob Houston except where indicated. Prices subject to change without notice, all items guaranteed. Some items subject prior sale. Send letterhead for Dealer price list. Texas residents add 6% tax. Please add postage estimate $\$ 1.00$ minimum.

Electronics Supply, Inc.
1508 McKinney Houston, Texas 77010
(800) 231-3057 6-10 PM, CST, M,W,F 713/658-0268

Advertisers ${ }^{\mathrm{N}} \mathrm{N}$ deX

If You Want The FFinest

LABORATORIES
'MONARCH' ' $10,15,20$
Meter "Tri-Band
Model TB5EM/4KWP

- Alpha 77DX: The ultimate amplifier for those who demand the finest.
- Eimac 8877 Tube - 1500 watts of plate dissipation.
- 4.4 KVA Hypersil*, removable, plug-in Transformer.
- Oil-filled, 25 mfd Filter Capacitor.
- QSK CW: Full break-in, (2) vacuum relays.
- Vacuum Tuning Capacitor
- Ducted air cooling, large, quiet blower, computer grade.
- Warranty (limited) 24 months, tube by Eimac.
- Other ALPHA's: 78, 76CA, 76PA, 76A, 374A, 77SX (Export Only).

Phone Don Payne, K4ID, for Special Prices, Brochure, and OPERATING EXPERIENCE on the CX-11A and Alphas.

PAYNE RADIO

Personal Phone - (615) 384-2224
P. O. Box 100, Springfield, Tenn. 37172

CX-11-A Integrated Station

- POWER OUTPUT: 150 watts CW/SSB output all bands (2) MRF 422 Finals.
- OPTIONAL POWER OUTPUT: 200 to 225 Watts CW/SSB output
- SYNTHESIZED FREQUENCY COVERAGE: All amateur bands 1.8 .30 MHz in full 1 MHz bands, plus 4 additional 1 MHz bands for future expansion.
- TWO PTO'S: Dual receiving, transceive on either, or split operation.
- QSK CW; Full break-in, vacuum relays. 300 Hz CW Filter built-in.
- SELECTIVITY: Two 8 pole plus one 4 pole filter deliver 20 pole $1.4: 1$ shape factor ($6 \mathrm{~dB} / 60 \mathrm{~dB}$), plus post detection $1.5,1.0, .4$ and .1 kHz bandwidth.
- BUILT-IN A/C supply, $115 / 230 \mathrm{~V}, 50 / 400 \mathrm{~Hz}$, Hypersil* transformer. IF shift, noise blanker, RF clipping, CW keyer, notch/peak filter.
- SERVICING: Self service easiest of any transceiver by using gold-plated sockets for transistor and IC replacement.
- RELIABILITY: Less than 1% failure. 99% of problems resolved in field.
- QUALITY: All military and computer grade. 100% American made.
- PRICE $\$ 5900$, mfg. by Signal/one Corp., Phoenix, AZ 85021.

The HD-73 Rotator by Alliance

 A precision instrument

 A precision instrument built to last.

 built to last.}

The HD-73 combines Dual-Speed rotation and a single 5 -position switch with the clear visibility of a backlit D'Arsonval meter. So you get precise control for fast and fine tuning. And the advanced technology of HD-73 is backed by quality construction. Heavy duty aluminum casings and hardened steel drive gears. Lifetime factory lubrication that withstands $-20^{\circ} \mathrm{F}$. to $120^{\circ} \mathrm{F}$. temperatures. The superior design of the HD-73 mast support bracket, with optional no-slip positive drive, assures perfect in-tower centering with no special tools. Automatic braking minimizes inertia stress. Easy to install, a pleasure to use. The HD-73 is on your wavelength. Write for performance details today.

I want to tune in on HD-73.

\square Send complete details
\square Give me the name of my nearest dealer.

name

adDress

CITY

HAL'S SHOPPER'S CUIDE

SEE YOU AT THE DAYTON HAMVENTION

11 CO 51 GHz , pre.
ATF 417 pre-amp. net
Special \$59.95
MRF 901 UHF transistor, 1 GHz
Special $\$ 3.95$ COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO 0600 MHZ FEATURES TWO INPUTS ONE FOR LOW FREQUENCY AND ONE FOR HIGH REOUENCY. AUTOMATIC ZERO SUPPRESSION TIME BASE IS 10 SEC OR I SEC GATE WITH OPTIONAL 10 SEC GAIE AVAILABLE ACCURACY \pm COMPLETE KIT $\$ 129$
CRYSTAL. 5 PPM HAL-300A 7-DIGIT COUNTER (SIMILAR TO 600A) WITH FREQUENCY RANGE OF 300 MHz

COMPLETE KIT $\mathbf{\$ 1 0 9}$
HAL-50A 8-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 50 MHz OR BEITER AUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPON DEMAND FEATURES TWO IN PUTS ONE FOR LOW FREQUENCY INPUT AND ONE ON PANEL FOR USE WITH ANY INTERAEEN MADE MOUNTED HALTRONIX PRE SCALER FOR WHICH PROVISIONS HAVE ALREAD CRYSTAL 5 PPM

FREE: HAL-79 CLOCK KIT PLUS AN INLINE RF PROBE WITH PURCHASE OF ANY FRE OUENCY COUNTER

PRE-SCALER KITS
HAL 300 PRE
HAL 300 A/PRE
HAL 600 PRE
(Pre-drilled G-10 board and all components)
(Pre-drilled G-10 board and all components)
HAL 600 A/PRE.
HAL- 1 GHz PRESCALER, vHF \& uhf input \& out
DIVIDES BY 1000: OPERATES ON A SINGLE
PREBUILT \& TESTED $\$ 79.95$

TOUCH TONE DECODER KIT

HIGHLY STABLE DECODER KIT COMESWITH2SIDED. PLATED THRU AND SOL DER FLOWED 6-10 PC BOARD 7.567 's. 2.7402 . AND ALL ELECTRONIC COMPONENTS BOARD MEAS URES $3-1 / 2 \times 5-1 / 2$ INCHES HAS 12 LINES OUT ONLY $\$ 39.95$
DELUXE 12-BUTTON TOUCHTONE ENCODER KIT UTILIZING THE NEW ICM 7206 CHIP PROVIDES BOTH VISUAL AND AUDIO INDICATIONS' COMES WITH ITS OWN TWO UENTS TO FINISH THE KIT PRICED AT $\mathbf{\$ 2 9 . 9 5}$ FOR THOSE WHO WISH TO MOUNT THE ENCODER IN A HAND-HELD UNIT, THE PC BOARD MEASURES ONLY $9 / 16^{\prime \prime} \times 1-3 / 4^{\prime \prime}$ THIS PARTIAL KIT WITH PC BOARO CAISTAL CHIP AND COMPONENTS

PRICED AT $\$ 14.95$
ACCUKEYER (KIT) THIS ACCUKEYER IS A REVISED VERSION OF THE VERY POPULAR WB4VVF ACCUKEYER ORIGINALLY DESCRIBED BY JAMES GARRETT. IN OST MAGAZINE AND THE 1975 RADIO AMATEUR S HANDBOOK
$\$ 16.95$
ACCUKEYER - MEMORY OPTION KIT PROVIDES A SIMPLE. LOW COST METHOD OF ADDING MEMORY CAPABILITY TO THE WBAVVF ACCUKEYER WHILE DESIGNED FOR DIRECT ATTACHMENT TO THE ABOVE ACCUKEYER IT CAN ALSO BE ATTACHED TO AN STANDARD ACCUKEYER BOARD WITH LITTLE DIFFICUL TY
PRE.AMPLIFIER

PRE-AMPLIFIER
HAL.PA. 19 WIDE BAND PRE-AMPLIFIER, $2 \cdot 200 \mathrm{MHz}$ BANDWIDTH (-30 E POINTS) 19 ©B GAIN

FULLY ASSEMBLED AND TESTED $\$ 8.95$
CLOCK KIT - HAL 79 FOUR-DIGIT SPECIAL - $\$ 7.95$ OPERATES ON 12-VOLT AC (NOT SUPPLIED) PROVISIDNS FOR DC AND 6-DIGIT CLOCK • $12 / 24$ HOUR
COMPLETE KIT CONSISTING OF 2 PC G-10 PRE DRILLED PC BOARDS 1 CLOCK CHIP 6 FND COMM CATH READOUTS, 13 TRANS 3 CAPS, 9 RESISTORS 5 DIODES. 3 PUSH. BUTTON SWITCHES. POWER TRANSFURMER AND INSTRUCTIONS DONT BE FOOLED BY CLOCK CASE AVAILABLE AND WILL FIT ANY ONE OF THE ABOVE CLOCKS REGULAR PRICE $\$ 6.50$ BUT ONLY $\$ 4.50$ WHEN BOUGHT WITH CLOCK
SIX-DIGIT ALARM CLOCK KIT FOR HOME CAMPER RV OR FIELD-DAY USE OPER ATES ON 12 -VOLT AC OR DC AND HAS ITS OWN 60 - HZ TIME BASE ON THE BOARD COM PLETE WITH ALL ELECTRONIC COMPONENTS AND TWO-PIECE PRE-DRILLED PC BOARDS BOARD SIZE $4^{\prime \prime} \times 3^{\prime \prime}$ COMPLETE WITH SPEAKER AND SWITCHES IF OPERA IET $\$ 16.95$
THERE IS NOTHING MORE IO BUY .
PRICED AT $\$ 10$. -TWELVE-VOLT AC LINE CORD FOR THOSE WHO WISH TO OPERATE THE CLOCK FROM 110-VOLT AC
SHIPPING INFORMATION - ORDERS OVER $\$ 2000$ WLL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REDUESTED ON ORDERS IESS IHAN $\$ 2000$ PLEASE INCIUDE ADDITIONAL $\$ 150$ FOR HANDLING AND MAILING CHARGES SEND SASE FOR FREE FLYER

DISTRIBUTOR FOR
Aluma Tower • AP Products
(We have the new Hobby-Blox System)
VISA

HAROLD C. NOWLAND W8ZXH
$H_{\text {al. }}$ Tronix
P. O. BOX 1101

SOUTHGATE, MICH. 48195 PHONE (313) 285-1782

WARC BANDS FACTORY INSTALLED!

 FT-707 is shown with optional FV-707DM VFO \& Scanning MicrophoneThe introduction of the "WAYFARER" by Yaesu is the beginning of a new era in compact solid state transceivers. The FT-707 "WAYFARER" offers you a full 100 watts output on 80-10 meters and operates SSB, CW, and AM modes. Don't let the small size fool you! Though it is not much larger than a book, this is a full-featured transceiver which is ideally suited for your home station or as a traveling companion for mobile or portable operation.
The receiver offers sensitivity of $.25 \mathrm{uV} / 10 \mathrm{~dB} \mathrm{SN}$ as well as a degree of selectivity previously unavailable in a package this small. The "WAYFARER" comes equipped with 16 poles of IF filtering, variable bandwidth and optional crystal filters for 600 Hz or 350 Hz . Just look at these additional features:

FT-707 with Standard Features

- Fast/slow AGC selection
- Advanced noise blanker
- Built-in calibrator
- WWV/JJY Band
- Bright Digital Readout
- Fixed crystal position
- Factory-installed WARC bands
- Unique multi-color bar metering-monitors signal strength, power output, and ALC voltage.

FT-707 with Optional FV-707DM

\& Scanning Microphone

- Choice of 2 rates of scan
- Remote scanning from microphone
- Scans in 10 cycle steps
- Synthesized VFO
- Selection of receiver/transmitter functions from either front panel or external VFO - "DMS" (Digital Memory Shift) Impressive as the "WAYFARER" is its versatility can be greatly increased by the addition of the FV-707DM (optional). The FV-707DM, though only one inch high, allows the storage of 13 discrete frequencies and with the use of "DMS" (Digital Memory Shift) each memory can be band-spread 500 KHz . These 500 KHz bands may be remotely scanned from the microphone at the very smooth rate of 10 Hz per step.

The FT-707 "WAYFARER" is a truly unique rig. See it today at your authorized Yaesu Dealer.

50 kW VHF power, greater efficiency. 4CX40,000G tetrode and cavities from Eimac.

Eimac's new CV-2200 series of practical, low-cost cavities are available now. Combined with Eimac's 4CX40,000G VHF tetrode, this efficient, compact package is recommended for FM broadcast service, VHFtelevision, particle acceleration and VHF radar.
Generating a measured power output of 60 kW , the 4CX40.000G tetrode offers power gains of 20 dB up to 218 MHz . High stability is achieved with the pyrolytic graphite grid structure. And a highly efficient, economical and quiet anode cooling system is inherent in its design.
Eimac supplies cavity and tube to match your requirements.

We back it up with know-how and application engineering information.

50 kW FM broadcast cavity CV-2200 with 4CX $40,000 \mathrm{G}$ tetrode.

More information is available from Varian Eimac Division. Or
the nearest Varian Electron Device Group sales office. Call or write today.

Electron Device Group Eimac Division 301 Industrial Way San Carlos, California 94070 415•592-1221, ext. 218

(1)
varian

[^0]: 2050 S. BUNDY DRIVE. LOS ANGELES, CALIFORNIA 90025 (213) $820-1234$

[^1]: Box 494, Mississippi State, MS 39762

[^2]: *M. Reed, Box 74, Soquel, California 95073. Delivered cost is five inductors for $\$ 5$.

[^3]: tTYPETRONICS, Box 8873, Fort Lauderdale, Florida 33310; \$3 per stack plus a shipping charge of $\$ 1.75$ for the first stack and $\$ 0.80$ for each additional stack. Be sure to specify the preferred inductor type as scramblewound red and green wire coils.

[^4]: An interesting coincidence came to our attention regarding the lowvoltage potential of the Collins 516F-2 power supply. Paul Pagel, N1FB, made modifications to his supply using virtualiy the same method as described by W6AD. However, while working beneath the power-supply chassis, N1FB added a 100 -volt, 1 -watt zener (HEP ZO438) between R8 and R9 iunction and ground. This device held the bias voltage to within a volt or so of its set value, whereas before this addition the bias voltage wandered considerably with the changing transformer load during CW keying. Editor.

[^5]: "Note the quaint captions on these drawings: one of the many devices that made OST so enjoyable in the old days.
 Editor, W6NIF

[^6]: *The back-to-back, self-rectified transmitter in fig. 2 was also popular in commercial circles as late as 1938. I was the chief (and only) operator on a tuna boat working out of San Diego in that year. The transmitter used a pair of UX852 tubes in a circuit almost identical to that shown in fig. 2 but designed to work on the 36-, 24 -, and 18 -meter marine bands. The transmitter was enclosed in a SOUARE-DTM switchbox, which was mounted on the bulkhead in the radio shack. Power was supplied from a 500 -cycle alternator. Thus the signal wasn't as broad as that from 8EX's rig, which operated from 60 -cycle ac; however, it had a good whine and made the coastal stations sit up and take notice. Editor, W6NIF

[^7]: *I have AC4YN's card for a two-way contact on 14 MHz dated April 2, 1947. Not for sale. Editor, W6NIF

[^8]: *Use caution in this operation. You can ruin connectors by applying too much heat. The idea is to apply heat to the N connector by waving the heat source (propane torch) back and forth over the connector while gently applying pressure to the dielectric material. At the right moment, the dielectric and center pin will pop out of the connector. Use too much heat, and you must go back to square one and start over. Editor.

[^9]: Antenna accessories - available with antenna orders
 Nylon guy rope, 450% test, 100 feet
 Ceramic (Dogbone Type) antenna insulators
 SO-239 coax connectors
 All prices are postpaid USA 48
 Available at your favorite dealer or order direct from

 ## Van

 Gorden
 Engineering
 BOX 2130s, s. IUCLIB, ONIO 44121
 $\$ 3.49$
 $.70 / \mathrm{pr}$.
 .55

[^10]: Converter bottom view. At upper right is the printed circuit supporting the rf trimmers, followed by the bandswitch and, at the left, the crystals (the $13-\mathrm{MHz}$ crystal is missing). Below the central aluminum element is the lower part of the main printed circuit together with its supporting bracket.

[^11]: 1. Tom Cornell, K9LHA, "сmos 2-Meter Synthesizer," ham radio, December, 1979, page 14.
[^12]: *Available from Fox Tango Corporation, Box 15944, West Palm Beach, Florida 33406.

[^13]: 4 LO phase noise is causing these low readings, also causes two-tone inputs to look better than they really are. 5 For a close-in signal, 4 kHz spacing. 6 Selectivity is being compromised by LO phase noise.

[^14]: NEW TOLL-FREE NO. 800-528-0180

[^15]: THE STOPSIGN BOARD WAS DEVELOPED AT OUR LAB FOR OPTIMUM PERFORMANCE WITH LOW COST THIS IS NOT A COPY IALTHOUGH WE ARE COPIED) WE STRIVE TO MAINTAIN THE ORIGINAL QUALITY.
 understanding our products makes serving you better

[^16]: ${ }^{8}$ Külrod is a Registered Trademark of Larsen Electronics, Inc.
 THülduckie is a Trademark of Larsen Electronics. Inc

[^17]: DELAWARE AMATEUR SUPPLY 71 MEADOW ROAD
 NEW CASTLE, DE 19720 302-328-7728 Icom, Ten-Tec, Swan, DenTron, Tempo, Yaesu, Azden, and more. One mile off l-95, no sales tax.

